Section 38 Campbell Traffic Impact Assessment

January 2020

Section 38 Campbell TIA Traffic Impact Assessment

Section 38 Campbell

Client: DOMA GROUP

ABN: 9360 2605 710

Prepared by

AECOM Australia Pty Ltd Civic Quarter, Level 4, 68 Northbourne Avenue, GPO Box 1942 ACT 2601, Canberra ACT 2601, Australia T +61 2 6100 0551 www.aecom.com ABN 20 093 846 925

15-Jan-2020

Job No.: 60528939

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document	Traffic Impact Assessment
Ref	60528939
Date	15-Jan-2020
Prepared by	Tim Heffernan, Nethmei Senarath
Reviewed by	Brendan Hogan

Revision History

Rev	Revision Date	Details	Auti	norised
ILEV	Revision Date		Name/Position	Signature
A	09-Dec-2016	Draft	Brendan Hogan Senior Transport Engineer	
1	14-Dec-2016	Final	Brendan Hogan Senior Transport Engineer	Original signed
2	21-Dec-2016	Final (updated images)	Brendan Hogan Senior Transport Engineer	Original signed
3	06-Sep-2018	Revised Layout	Brendan Hogan Senior Transport Engineer	Original signed
3A	10-Sep-2018	Revised Layout - Reissue	Brendan Hogan Senior Transport Engineer	Original signed
4	25-Sep-2018	Revised Parking Layout - Reissue	Martin Mallia Principal Traffic Engineer	Original signed
5	25-Jan-2019	Revised Yield	Brendan Hogan Senior Transport Engineer	Original signed
6	21-Mar-2019	Updated following TCCS comments	Brendan Hogan Senior Transport Engineer	Original signed
7	14-June-2019	Revised Layout	Brendan Hogan Senior Transport Engineer	Original signed
8e	15-Jan-2020	Revised Layout and Access Arrangements review	Brendan Hogan Senior Transport Engineer	Blogar

Table of Contents

Execu	itive Sumr	nary	i
1.0	Introdu	uction	1
	1.1	Background	1
	1.2	Purpose of this Report	1
	1.3	References	1
2.0	Existir	ng Conditions	2 2 2 3 3 3
	2.1	The Site	2
		2.1.1 Current Land Use	2
	2.2	Road Network	3
		2.2.1 Adjoining Roads	3
		2.2.2 Surrounding Intersections	
	2.3	Crash Analysis	5 5
	2.4	Traffic Volumes	8
	2.5	Updated Traffic Counts	9
	2.6	Existing Intersection Operation	9 9
	2.7	Car Parking	10
	2.8	Public Transport	10
	2.9	Pedestrian and Cyclist Facilities	12
3.0		opment Proposal	13
0.0	3.1	Proposed Development	13
	3.2	Vehicle Access	14
	0.2	3.2.1 Options Assessment and Suitability Consideration	14
		3.2.2 Right-out Geometry Consideration	15
		3.2.3 Alternate Access Points	16
		3.2.4 Heavy vehicle access	16
	3.3	Vehicle Access Distribution	18
	3.4	Car Parking	18
	3.5	Pedestrian and Bicycle Facilities	19
	3.6	Active Travel Paths	19
4.0		t of the Development	21
4.0	4.1	Traffic Generation	21
	4.1	Trip Distribution	21
	4.3	Intersection Impacts	23
	4.5	4.3.1 Future Intersection Performance	23
	4.4	Access Arrangements	24
5.0	Car Pa		25
5.0	5.1	Car Parking Requirements	25
	5.2	Other Factors	26
	5.2	5.2.1 Accessible Parking Provision	26
			26
	5.3	5.2.2 Motorcycle / Small Vehicle Parking Provision Car Parking Layout Review	20
6.0		nable Transport Infrastructure	20
0.0	6.1	Bicycle End of Trip Facilities	27
	6.2	Walking and Cycling Network	28
	6.3	Walkability Score	20
	6.4	Consideration of Alternate Site Access Options	30
70		•	
7.0	Conclu		32
Apper	ndix A		
-		ed Crash Diagram	A-1
Annor	ndix B		
whhei		A Outputs	В
	SIDRA		D

Executive Summary

DOMA Group (ABN 9360 2605 710) has briefed AECOM Australia Pty Ltd (ABN 20 093 846 925) to prepare a traffic impact assessment report for the proposed development of Block 4 Section 38, Campbell, ACT 2612.

The proposed development comprises of the 244 residential dwellings and some ancillary ground floor recreation area. This includes 117 apartments and 127 townhouses (95 in stage 1 and 32 in future stage).

The analysis and relevant discussion in this report led to the following conclusions:

- The parking requirement as per the code requirements for Stage 1 of the proposed development is 402 car spaces to accommodate the residential land use.
- The on-site supply exceeds the minimum requirements and is considered appropriate for the for the proposed development.
- The site has an expected traffic generation of up to 146 vehicles in the AM and PM peak hours.
- Based on a review of safety, capacity and constructability, the existing access arrangement for the site and recommended to be retained.
- There is adequate capacity in the surrounding existing local road network to accommodate the traffic generated by the proposed development. The additional traffic proposed on Limestone Avenue has a minimal effect on queuing and delays at the key intersections as demonstrated by the modelling developed.
- Provision is made for all access arrangements to operate safely and efficiently in compliance with AS2890.1.
- Although the right turn movement from the site has impeded sightlines, the crash data did not indicate that this movement is a high-risk movement.
- The provision for bicycle facilities will be met on site through secure parking areas consistent with the Bicycle Parking General Code.

1.0 Introduction

1.1 Background

DOMA Group (ABN 9360 2605 710) has briefed AECOM Australia Pty Ltd (ABN 20 093 846 925) to prepare a traffic impact assessment report for the proposed development of Block 4 and 5 Section 38, Campbell, ACT 2612.

It is proposed to build a residential development which will include 244 private residences.

1.2 Purpose of this Report

This report sets out an assessment of the anticipated transport implications of the proposed development including consideration of the following:

- i. existing traffic and parking conditions surrounding the site;
- ii. suitability of the proposed parking in terms of supply (quantum) and layout;
- iii. service vehicle requirements;
- iv. pedestrian and bicycle requirements;
- v. the traffic generating characteristics of the proposed development;
- vi. suitability of the proposed access arrangements for the site;
- vii. the transport impact of the development proposal on the surrounding road network

1.3 References

In preparing this report reference has been made to the following:

- an inspection of the site and its surrounds
- Australian Standard/ New Zealand Standard, Parking Facilities, Part 1: Off-Street Car Parking AS/NZS 2890.1:2004
- Australian Standard, Parking Facilities, Part 2: Off-Street Commercial Vehicle Facilities AS 2890.2:2002
- Australian Standard / New Zealand Standard, Parking Facilities, Part 6: Off-Street Parking for People with Disabilities AS/NZS 2890.6:2009
- Environment and Planning Directorate (EPD) Parking and Vehicular Access Code (formerly ACTPLA)
- Environment and Planning Directorate (EPD) Bicycle Parking General Code (formerly ACTPLA)
- EPD (formerly ACTPLA) Residential Subdivision Development Code
- National Construction Code of Australia (NCC)
- RMS NSW Guide to Traffic Generating Developments (October 2002 Version 2.2)
- Traffic and car parking observations undertaken and as referenced in the context of this report
- Plans for the proposed development prepared by Stewart Architecture
- Other documents and data as referenced in this report
- Transport Canberra And City Services Standard Drawings.

2.0 Existing Conditions

2.1 The Site

The subject site is located on the existing Block 4 and 5 of Section 38 in Campbell. The site has an area of approximately $40,102 \text{ m}^2$ and is bounded by Block 4 Section 63 Campbell to the north and east, Limestone Avenue to the west and Campbell High School to the south. Location of the subject site is shown in Figure 1.

Figure 1: Site Location

2.1.1 Current Land Use

Currently the site contains the previously occupied CSIRO building headquarters. The site was abandoned in 2016 when the CSIRO were fully relocated to their Black Mountain facility. The existing buildings are located towards the northern boundary of the site. There is an at-grade car park located in the eastern corner of the site.

The site is currently used informally as a pick-up/drop-off location for the adjacent Campbell High School. School users access the site primarily from the access track located between Quick Street and the site, alternatively the site is accessed from the main access on Limestone Avenue.

- 2.2 Road Network
- 2.2.1 Adjoining Roads
- 2.2.1.1 Limestone Avenue

Figure 2: Limestone Avenue (adjacent site looking south)

Figure 3: Limestone Avenue (adjacent site looking north)

Figure 4: Limestone Avenue (right turn lane/ramp)

Limestone Avenue functions as an arterial road. It connects Ainslie, Braddon, Reid and Campbell in a north/south direction. It is primarily configured as two 2-lane carriageways approximately 7m in width. Within the vicinity of the site Limestone Avenue includes a left-turn deceleration lane and a right turn lane/ramp from the existing site access (Figure 4).

2.2.1.2 Existing Site Access

Figure 5: Existing Site Access (adjacent site looking west)

The existing site access is located off Limestone Avenue. The street is approximately 6.5m wide and consists of a single carriageway with a single lane in each direction. The street connects Limestone Avenue to the site car park and the existing laneway from Quick Street.

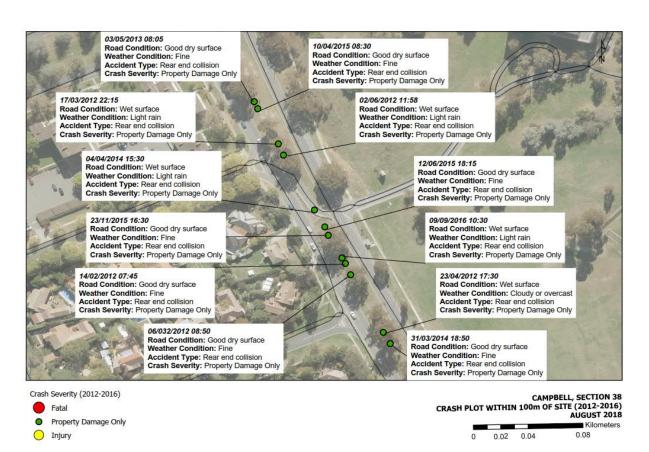
2.2.1.3 Quick Street

Figure 6: Quick Street (adjacent site looking east)

Quick Street is an access road which is located to the north of the site. The street is approximately 7.5m wide and consists of a single carriageway with a single lane in each direction. The road provides connectivity between Limestone Avenue and Hayley Street.

2.2.2 Surrounding Intersections

The following key intersections will be impacted by the proposed development and are located in the immediate vicinity of the site:


- Limestone Avenue / Ainslie Avenue (Signalised Intersection)
- Limestone Avenue / Euree Street / Treloar Crescent (Un-signalised Intersection)
- Limestone Avenue mid-block pedestrian crossing between Euree Street and Coranderrk Street. (signalised)

2.3 Crash Analysis

A detailed analysis of the crashes that occurred near the site between January 2012 and December 2016 was undertaken to determine the risks associated with the existing access point and frequency of crashes in close proximity to the site. The key findings of the crash analysis are summarised as follows.

Within 100m of the existing site access:

- 12 crashes occurred in the 5 year period analysed.
- No crashes involved injury or fatality.
- All 12 crashes were rear end collisions.

Figure 7: Crashes within 100m of the Existing Site Access (2012-2016)

None of the crashes appeared to be in relation to the right turn egress. These crashes would likely involve turning and through collisions, side swipe or weave crashes.

More broadly within the wider area the crash history was also reviewed. South of Ainslie Avenue to Treloar Crescent:

- 46 crashes occurred in the 5 year period analysed.
- 8 crashes involved injury, 0 involved fatality.
- 23 crashes occurred at the intersection of Limestone Avenue, Euree Street and Treloar Crescent.
- 23 crashes were rear end collisions (50%)
- 16 crashes were right angle collisions (35%)
- 6 of the 8 injury crashes were right angle collisions and occurred at the intersection of Limestone Avenue, Euree Street and Treloar Crescent.

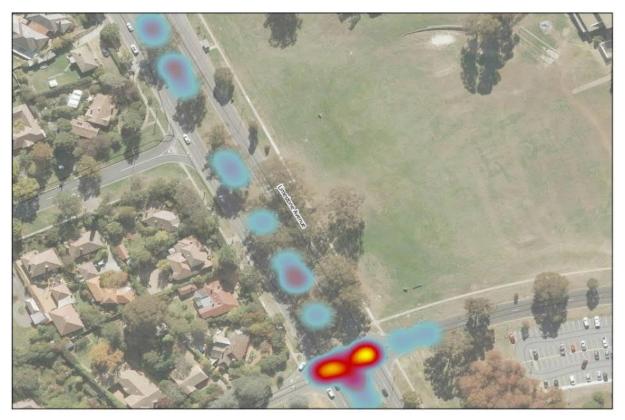


Figure 8: Crash Frequency/Density Distribution (2012-2016)

The crash data indicates that the majority of crashes analysed occurred at the intersection of Limestone Avenue, Euree Street and Treloar Crescent, which also included the majority of injury crashes.

The crash data also indicated that it is unlikely that the right turn movement from the existing site access caused any crashes. The data indicates that it is most likely that the crashes observed within 100m of the existing site access were rear-ending crashes as a result of the queuing caused by the adjacent signalised intersections. There is no clear correlation between the crash data and the right turn movement from the site entering Limestone Avenue northbound.

A full detailed crash breakdown can be found in Appendix A.

7

2.4 Traffic Volumes

Two data sources were used to determine the existing traffic volumes. These include:

- Traffic survey counts undertaken by Trans Traffic Survey Tuesday 15th November 2016 at the intersections of Ainslie Avenue / Limestone Avenue and Euree Street / Limestone Avenue / Treloar Crescent.
- SCATS data was also collected for the intersection of Ainslie Avenue / Limestone Avenue and the signalised pedestrian crossings between Coranderrk Street / Euree Street and between Euree Street and Anzac Parade.

These data sources were used to build a traffic model of the existing site adjacent traffic network (Figure 9).

Figure 9: Limestone Avenue Traffic Modelling Extents

The extents of the traffic model were determined based on the greatest potential impact of the proposed development on the site adjacent intersections. The existing volumes and observed operation of the Limestone Avenue / Ainslie Avenue intersection indicate that it will be a key concern with regards to future operation with the addition of the proposed development generated traffic. Similarly, the impacts of the development on the priority controlled intersection of Euree Street / Limestone Avenue / Treloar Crescent will be analysed to determine the extent of the impact of the proposed development.

2.5 Updated Traffic Counts

Updated SCATs data was collected on Tuesday 7th August 2018 for the intersection of Limestone Avenue / Ainslie Avenue and the Limestone Avenue midblock between Anzac Parade and Treloar Crescent. The data was compared with the previous traffic count data and showed negligible difference. Hence the previous background data was considered appropriate for use and the existing network was maintained.

2.6 Existing Intersection Operation

The operation of the existing intersections has been analysed using SIDRA INTERSECTION 6.1. This modelling package has been used to develop a linked intersection model to determine the performance of the existing intersection arrangements for both the AM and PM peaks. The weekend peak was not assessed as the network traffic is significantly lower during the weekend peak.

Average delay and Level of Service (LoS) are two of the key indicators of intersection performance. Table 1 below provides an explanation of the parameters of the LoS for SIDRA for signalised intersection and roundabout arrangements.

Level of Service	Average Delay / Vehicle (sec/veh)	Traffic Signals and Roundabouts	
А	Less than 14	Good Operation	
В	15 to 28	Good with acceptable delays and spare capacity	
С	29 to 42	Satisfactory	
D	43 to 56	Operating near capacity	
E	57 to 70	At capacity; at signals incidents will cause excessive delays	
F	>70	Roundabouts require other control mode	

Table 1 SIDRA LOS Parameters

Table 2 below indicates the existing performance of the intersections analysed within the traffic network.

Intersection	Peak	Degree of Saturation	Average Delay (s)	95th Percentile Queue (m)	Level of Service
Limestone Avenue / Ainslie Avenue	AM	0.65	11	69	А
Amslie Avenue	PM	0.61	9	46	А
Limestone Avenue /	AM	0.56	1	1	-
Alambee Street / Site Access	PM	0.44	1	2	-
Limestone Avenue /	AM	0.56	1	1	-
Coranderrk Street	PM	0.44	1	2	-
Limestone Avenue	AM	0.80	6	100	A
Pedestrian Crossing	PM	0.71	4	48	A
Limestone Avenue /	AM	0.55	2	11	-
Euree Street / Treloar Crescent	РМ	0.44	3	11	-

Table 2 Existing Intersection Performance

The results of the analysis above indicate that the existing operation of the intersection of Limestone Avenue / Ainslie Avenue is satisfactory. Similarly, the site access intersection currently operates with low volumes and low delays/queues. The model was calibrated using on-site peak hour queuing observations.

2.7 Car Parking

Currently the site possesses private at grade parking which was used to service the CSIRO. There are currently ~190 at grade parking spaces on the site. The existing parking area is currently used as an unofficial pick-up/drop-off facility for the adjacent school.

Other parking facilities in proximity to the site include the Campbell High School car park, on-street parking on Ainslie Avenue and on-street parking on Quick/Hayley Streets.

2.8 Public Transport

Campbell is an established area of Canberra with a frequent and reliable public transport network. The weekday public transport services for the site are shown in Figure 10.

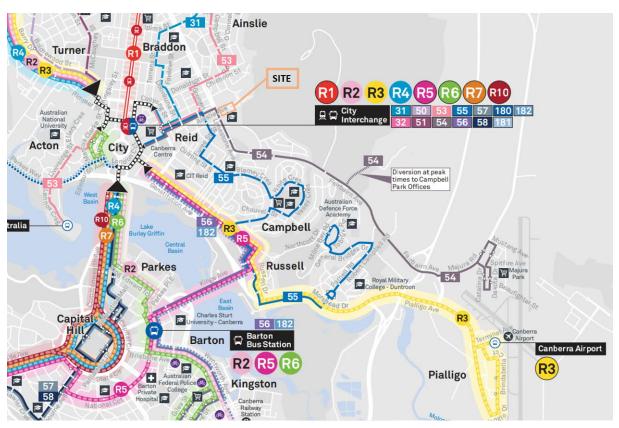


Figure 10: Transport Canberra Weekday Bus Network

There are two bus stops within in the immediate vicinity of the site located on Limestone Avenue northbound and southbound. The weekday routes that pass through these stops are the number 54 and 55 as indicated in Figure 10 above. The following tables outline the routes and frequency of the weekday bus services in this location.

Table 3: Transport Canberra Weekday Bus Network

Route #	Route Description	Frequency On peak		Frequency Off Peak
		AM 8am to 9am	PM 5:30pm to 6:30pm	12pm to 1pm
54	City Interchange, Campbell Park (Peak) Majura Park	30 minutes	30 minutes	60 minutes
55	City Interchange, Reid, Campbell, Russell, Duntroon	30 minutes	30 minutes	60 minutes

The total number of buses that access the site adjacent bus stops during the peak periods is relatively low compared to the frequency of buses in other locations in inner-Canberra suburbs.

Figure 11 indicates that the existing public transport accessibility for the site is moderate. An increase in frequency of the services along Limestone Avenue would improve this service level.

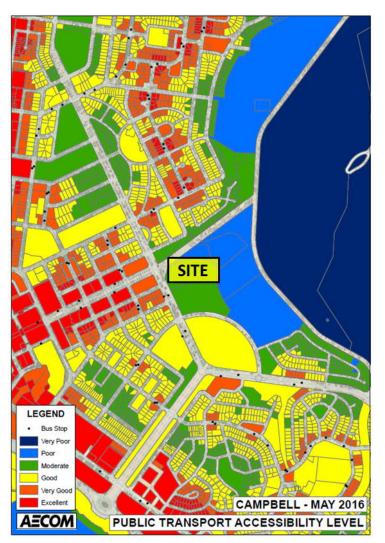


Figure 11: Campbell Public Transport Accessibility Level

2.9 Pedestrian and Cyclist Facilities

Public footpaths follow the verges of the streets surrounding the site allowing easy access for both pedestrians and cyclists. On-road cycle facilities are located on Fairbairn Avenue and at the Ainslie Avenue / Limestone Avenue intersection adjacent to the site. Pedestrian crossing facilities are located at the Ainslie Avenue / Limestone Avenue intersection and the dedicated signalised pedestrian crossing on Limestone Avenue adjacent to Campbell High School. Figure 12 indicates the existing pedestrian and cyclist facilities within proximity of the site.

Figure 12: Pedestrian and Cyclist Facilities

3.0 Development Proposal

3.1 Proposed Development

It is proposed to remove the existing old CSIRO building and car park that currently occupies Block 4, of Section 38, Campbell. This will be replaced with the proposed development which consists of the following:

- 244 residential dwellings including apartments and townhouses
- Recreation Area for the use of residential guests (considered as ancillary residential use)

The development will consist of 117 apartments and 127 townhouses (95 in stage 1 and 32 in future stage). The ground floor of the west building is proposed to be made up of a recreation area.

The layout of the proposed development is shown in Figure 13.

Figure 13: Proposed Development

3.2 Vehicle Access

Primary vehicle access is proposed to be provided from Limestone Avenue. The existing Limestone Avenue access is a left-in only access from Limestone Avenue southbound. The existing egress from the site is also proposed to be retained which consists of a both left and right out movements. The right-out from the site involves a graded egress ramp to access Limestone Avenue northbound. The right-out movement from the site was reviewed in terms of safety and operation.

3.2.1 Options Assessment and Suitability Consideration

Several options were investigated in relation to the access considerations for the site. A number of factors were considered in determining the preferred access arrangement for the site, including distribution, network impacts, safety and active travel movements. Table 4 summarises the key options assessed and considerations behind retaining the existing site access arrangements noting the advantages and disadvantages of the various access configurations.

Access Arrangement	- Advantages	Disadvantages
Retain Existing Layout (left-in, left-out, right- out)	Existing layout with adequate visibility and level of safety not expected to decrease with proposed use. The crash data analysed from the previous 5 years does not indicate any history of crashes as a result of this movement.	No right-in movement available which limits some traffic distribution from the site. Right-out movement approach angle to Limestone Avenue northbound at a low angle.
	The platooning of vehicles from the signalised pedestrian crossing upstream provides acceptable gaps in traffic for vehicles entering Limestone Avenue.	
	The stop control and two staged movement of the right turn out separates and manages potential conflict risk.	
Left-in Left-out Only	Minimisation of potential vehicle	Reduction of vehicle distribution options
	conflicts at access point.	Likely result in an increase to U-turns at adjunct intersections resulting in greater safety and capacity impacts
		Possibly increase in rat-running in local streets.
Signalised – all movements	Allows priority movement of vehicles in all directions. Allows for priority pedestrian movements in close proximity to	Close proximity to two existing sets of traffic signals on Limestone Avenue limiting network efficiency and increasing congestion and delays.
	the site.	Introduces another hold point in the network which may result in additional accidents, particularity rear end crashes
		Existing levels and grades in the Limestone Avenue median geometrically restrict the safe design and construction of this movement.
		Road surface and pedestrian movements would be very steep

Table 4 Site Access Justification

Unsignalised – all movements	Improves vehicle distribution to/from the site.	Highest risk of conflict due to uncontrolled right-turn in/out movements.
		Not ideal to introduce new vehicle movements on a major distribution road such as Limestone Avenue.
		Existing levels and grades in the Limestone Avenue median geometrically restrict the safe design and construction of this movement.
		Impacts to and possibly removal of significant trees in the vicinity of the intersection.

It was determined that although the approach angle of the right turn movement is not ideal for sight distance for entering Limestone Avenue, the right turn movement outbound is considered appropriate and presents a good outcome from a safety and capacity perspective. Further considerations that inform our recommendation are discussed below.

Distribution of traffic and the traffic network would be impacted if the right-turn outbound movement were to be banned from the site. This would likely result in an increase in northbound vehicles undertaking a U-turn at the next intersection on Limestone Avenue / Treloar Crescent. U-turn movements have a greater safety risk than straight through traffic. An increase in U-turn movements for vehicles trying to head north would add additional conflict at an existing accident hot-spot location. This risk could be mitigated by retaining the existing two-staged right-turn out movement. Further, retention of the right-turn outbound movement maintains a good level of distribution from the site. In future there may be capacity issues at the Anzac Parade roundabout and greater distribution options would only be beneficial. The stop control and two staged movement of the right turn separates reduces potential conflict risk.

Being residential, the expected road users will be are aware of the operation of this access arrangement. Although the approach angle is not ideal for sight distance there is no anticipated increase in safety risk to road users as a result of retaining this access. Limestone Avenue is straight and fairly flat at that location and there is visibility back long Limestone Avenue to view oncoming traffic and judge appropriate gaps. Vehicles using the existing outbound movement have additional gaps in traffic due to the platooning of vehicles as a result of the upstream signalised crossing. This is especially prevalent in the AM peak where the pedestrian call frequency of these midblock signals is high. This aligns well with the expected peak use of the site egress movements in the AM peak. Further, vehicles using the existing outbound movement have sufficient distance to safely merge across Limestone Avenue and turn left of Ainslie Avenue.

Similarly, the location of the traffic signals at the intersection of Ainslie Avenue and Limestone Avenue creates vehicle platoons on Limestone Avenue southbound during the peak periods. This platooning is located only 150m north of the egress from the site and therefore creates regular, adequate platoons for vehicles exiting the site. Vehicles will be able to safely exit both left and right from the site due to the platooning created from the upstream traffic signals.

Heavy vehicle movements from the site are predominately expected to be waste vehicles. It is proposed that these vehicles access the site using a left-in left-out movement.

Pedestrian safety, connectivity and active travel were key concerns when determining the preferred access arrangement. The existing signalised pedestrian crossings on Limestone Avenue south of the site and at the intersection of Limestone Avenue / Ainslie Avenue provide sufficient connectivity to the Mercure hotel and towards the Canberra Centre.

3.2.2 Right-out Geometry Consideration

As part of the access analysis, AECOM investigated several alternate options for the right-out geometry. The geometry options considered, and relevant comments are summarised in Table 5 below.

Table 5	Right-out	Geometry	Considerations
	ingine out	000111011	e enterationalitente

Right-out Arrangement	Related Issues
Median Break at 90 Degrees to Limestone Avenue	 A straight across options had grade issues due to the steep slope creating an unsafe downward sloping approach grade
	 The design may encourage vehicles to utilise the median break in the opposite direction
	 There is an existing private driveway located directly adjacent to where this median break would be located
	Small storage capacity (1 to 2 vehicles)
	 Small offset to the existing northbound bus stop on Limestone Avenue
Extended Lane to Create a Parallel Merge on Limestone	 Very low approach angle, drivers forced to look over their shoulder in short merge lane
Avenue Northbound	 Queuing from Ainslie Avenue intersection is likely to impact the merge lane, likely to result in rear-end or side swipe crashes
	 There are potential weaving issues from vehicles merging and crossing exiting Allambee Street
	Tree removal required to accommodate this option
	Inadequate merge taper length
High Angle Right-out Turn	 A high angle approach has grade and alignment issues due to the median width
	 Would require an alignment in a reverse S shape which is not a conventional or safe vehicle movement
	Tree removal required to accommodate this option
	Potential conflict with Allambie Street ingress

From the considerations of the alternate right-out options above it is clear that the issues that would be created as a result of an alternative option would create a significant and unnecessary reduction in safety for road users. The current right-out arrangement, although not ideal for sight distance, is a frequently used access arrangement with a low crash history, therefore it is recommended to retain this arrangement, opposed to introducing a new right-out arrangement with inherent associated risks.

3.2.3 Alternate Access Points

Access off Quick Street /Hayley Street was considered as an alternate access point to site servicing however it has multiple constraints that impact on it being achieved resulting in it being non viable. Primarily this is the fact that it is a non gazetted road. Issues with connections, habitat, land ownership and legibility were also problematic.

A road link at that part would also induce more traffic on the local Ainslie road network. Conflict with the school children and passive surveillance could also become and issue.

3.2.4 Heavy vehicle access

Heavy vehicle access is proposed to be provided from Limestone Avenue. The proposed roundabout arrangement at the end of the access from Limestone Avenue will be developed to ensure that the road width is appropriate for the manoeuvring of a waste vehicle. The waste carting diagram and truck service manoeuvring is shown in Figure 14. Waste services will be collected from Building A. Other heavy vehicles servicing the recreational facilities will also access the site as described above.

Figure 14: Proposed Development Waste Services Movements

3.3 Vehicle Access Distribution

As outlined above, maintaining in the current access arrangements and not introducing additional conflict points or restrictions to the network is considered the most appropriate access treatments for the site. The absence of a right turn ingress movement into the site will result in some minor redistribution of inbound vehicles to accommodate the left-in only ingress movement from Limestone Avenue. The two primary locations where eastern traffic (traffic that would have typically utilised the right turn in movement) would approach the site are from Fairbairn Avenue and from Parkes Way. The likely rerouting options from these origins are shown in Figure 15.

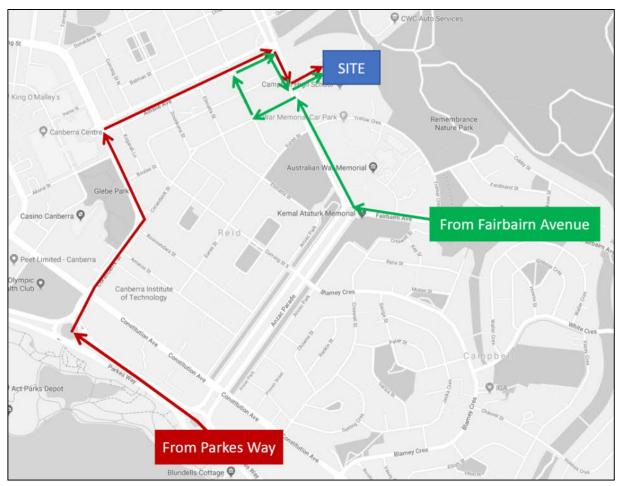


Figure 15: Ingress Right-in Redistribution Routes

Drivers accessing the site from the east will typically choose to route via Parkes Way if they have the option of this route. The only origin area in the ACT that would be likely to access the site from Fairbairn Avenue is Campbell based traffic. According to ABS journey to work data, this would account for only 6% of all traffic that would access the site. The traffic generation analysis indicates that the total inbound traffic for the development is 30vph in the AM peak and 115vph in the PM peak. Therefore, the potential number of vehicles that would be required to reroute from Fairbairn Avenue is 2vph in the AM peak and 7vph in the PM peak.

3.4 Car Parking

The proposed overall carpark provision for Stage 1 of this development is 575 car parking spaces. A breakdown of spaces includes:

- 168 parking spaces for apartments
- 337 parking spaces for townhouse
- 69 parking spaces for visitors

3.5 Pedestrian and Bicycle Facilities

Path and pedestrian linkages are proposed to be provided throughout the development. The key linkages will be located on the north and south boundaries of the site providing east-west pedestrian connections through the site. Hard stand and paved driveway areas will also be used for pedestrian connectivity.

The proposed pedestrian paths and linkages are shown in Figure 16 below.

The suitability of the proposed pedestrian and bicycle facilities is discussed in Section 6.0.

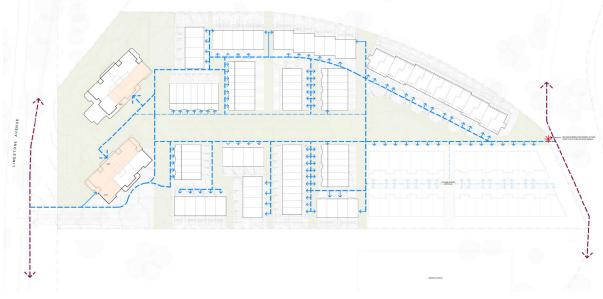


Figure 16: Proposed Pedestrian Paths and Linkages

3.6 Active Travel Paths

The active travel paths for pedestrians from the site to the nearest bus facilities are shown in Figure 17. The southbound bus stop on Limestone Avenue is located directly out the front of the proposed development (<50m from the site). Pedestrian access to the bus stop from the site is via the existing pedestrian footpath. The northbound bus stop on Limestone Avenue is located opposite. Pedestrian access to this bus stop is via either the signalised pedestrian of Limestone Avenue / Ainslie Avenue to the north of the site or via the signalised pedestrian crossing on Limestone Avenue to the south of the site. The shortest option to access this bus stop is via the signalised pedestrian crossing on Limestone Avenue. For dwellings located in the proposed development, the walking distance will vary between 275m to 605m, depending on the starting/finishing location within the site. Generally, the preferred maximum walking distance from a dwelling to a bus stop is 400m in the ACT, with distances greater than 800m considered to be outside of an acceptable walking distance. The required walking distance to the furthest bus stop for this development is under 400m for approximately 50% of the development dwellings, and under 800m for the remaining 50% of the development dwellings. The proximity of the existing bus stops to the site are considered to be an acceptable walking distance and the existing infrastructure for the active travel paths to/from these facilities are considered acceptable.

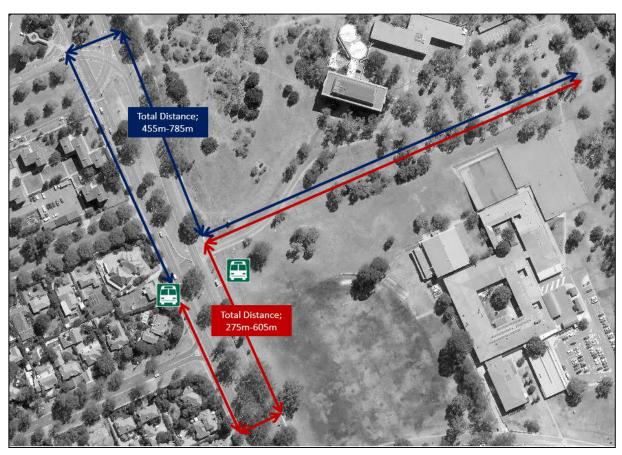


Figure 17: Existing Pedestrian Access to Public Transport Stops

4.0 Impact of the Development

4.1 Traffic Generation

The traffic generation for the development was determined based upon rates from the Environment and Sustainable Development Estate Development Code.

A trip rate of 0.6 vehicle trips per dwelling in a peak hour was applied to the proposed residential development as per the Estate Development Code.

A summary of the trip generation for both Stage 1 and Stage 2 of the development is as follows:

Table 6 Trip Generation

Land Use	Rate	Yield	Peak Hour Traffic Generated
Residential	0.6	244	146 vph

As the site is not currently occupied, the traffic generated by the site is considered to be negligible and was not considered in the traffic distribution modelling calculations undertaken.

Previous analysis of the site undertaken in 2016 resulted in higher yields and traffic generation. The site was therefore tested and modelled at a higher traffic generation rate than the current proposed use as listed above by approximately 100 vph. This provides further confidence in the future operation of the traffic network as a result of the proposed development.

4.2 Trip Distribution

The trip distribution assigned to the site generated traffic was determined primarily using the 2016 Australian Bureau of Statistics (ABS) journey to work data and TCCS household travel survey. The modified Journey to Work (JTW) data, treating Campbell as the destination, for the key areas within the ACT as follows:

-	Belconnen	33%
-	Civic	13%
-	Gungahlin	20%
-	Woden/Tuggeranong	34%

The right turn movement from the proposed development as per the JTW data was considered to be higher than the most likely scenario considering the existing volume of vehicles on Limestone Avenue and the subsequent queues. For this reason, 50% of the likely right turning vehicles were redistributed to turn left onto Limestone Avenue and utilise ANZAC Parade or go through Reid to access the City. This redistribution is a reasonable representation of driver behaviour in this situation where they alter their routes to achieve the lowest perceived delays.

The egress from the site should be retained as a single exit lane to avoid the potential conflict associated with the sight lines of the left turn vehicles being impeded by the right turning vehicles exiting the site.

The inbound/outbound splits for the trip distribution for the site land uses are summarised Table 7.

Table 7 Inbound and Outbound Splits

Land Use	Peak	INBOUND	OUTBOUND
Residential	AM	20%	80%
	PM	80%	20%

The above inbound/outbound percentage splits were applied to the site generated traffic within the network shown in Figure 1.

In addition to the traffic volumes generated from the site background traffic growth was reviewed for the broader network. This was undertaken by reviewing the Canberra Strategic Transport Model (CSTM) forecasts for 2016 and 2031. The review showed a 2.3% and 4.3% increase in traffic along Limestone Avenue for the AM and PM peaks respectively. This growth was then applied across the network. A summary of the resultant future traffic volumes in the road network surrounding the development in the AM and PM peak periods is shown in Figure 18 and Figure 19.

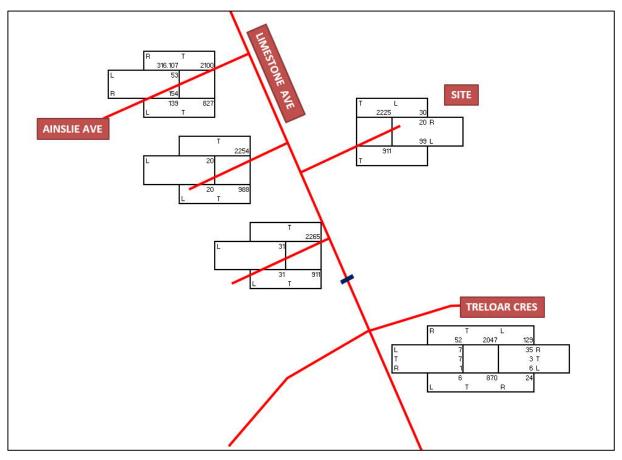


Figure 18: Future AM Peak Hour Turn Volumes (2031 with development)

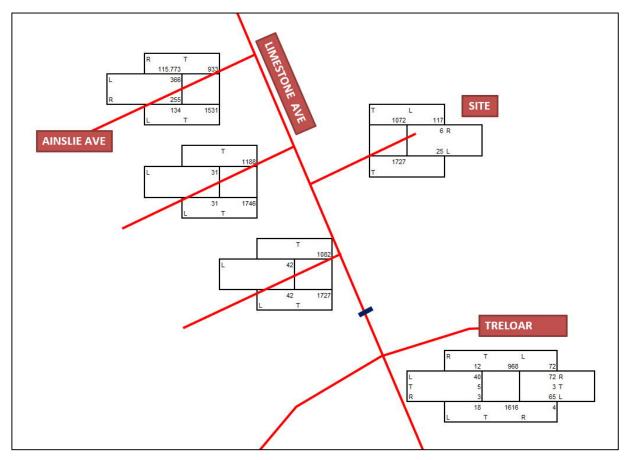


Figure 19: Future PM Peak Hour Turn Volumes (2031 with development)

\\AUCBR1FP001\Projects\CBR\60528939\500_DELIV\501_Report\Traffic Impact Assessment_Section 38 Campbell rev8_e.docx Revision 8e - 15-Jan-2020 Prepared for - DOMA GROUP - ABN: 9360 2605 710

4.3 Intersection Impacts

The traffic generation from the proposed development and traffic distribution determined as part of these modelling works were used to determine the additional traffic volumes to be placed on the local traffic network adjacent to the site.

4.3.1 Future Intersection Performance

The expected traffic generation of the proposed development was analysed in SIDRA Intersection 8.0. A summary of the results can be seen in the table below. The signalised mid-block crossing has been assessed in relation to the traffic movement and operation of adjacent intersections. This includes the expected crossing demand and call frequency. When called, the green pedestrian movement holds through traffic which creates additional gaps in the through traffic movements to assist with turning movements for downstream side roads.

The intersection of Limestone Avenue / Euree Street / Treloar Crescent was modelled as a 4-way priority controlled un-signalised intersection. The median was given allocation for 4 vehicles to queue; two through and two right.

The operation of signalised intersection of Ainslie Avenue and Limestone Avenue accounted for pedestrian movements crossing in the phase timings.

The SIDRA analysis undertaken indicates that the proposed development will have a marginal negative impact on the operation of the site adjacent intersections. This was represented by a maximum increase in queuing of 18 m and a maximum increase in delays of 1 s. The increase in queuing is directly related to the outbound movement from the site where the delay is only increased by 1 s.

The intersection with the worst delays, queues and level of service was the intersection of Limestone Avenue and Ainslie Avenue. This intersection will operate at an average LOS A in the AM and PM peak periods. The side roads of this intersection operate at lower level of service (D/E/F) however this is representative of the existing intersection operation and the proposed development has only a minor negative impact on the operation of the side roads. The increases in delays and queuing as a result of the development on this intersection were minimal, as indicated above, signifying that the development has only a minor negative impact on the operation of the operation of the side roads. The performance of this intersection is considered to be a minor overall performance reduction.

For more detailed results see Appendix B.

Intersection	Peak	Degree of Saturation	Average Delay (s)	95th Percentile Queue (m)	Level of Service
Limestone Avenue /	AM	0.67	11	76	А
Ainslie Avenue	PM	0.64	10	60	А
Limestone Avenue /	AM	0.57	1	40	-
Alambee Street / Site Access	PM	0.46	1	1	-
Limestone Avenue /	AM	0.58	1	1	-
Coranderrk Street	PM	0.46	1	2	-
Limestone Avenue	AM	0.83	7	118	А
Pedestrian Crossing	PM	0.76	5	58	А
Limestone Avenue /	AM	0.58	2	13	-
Euree Street / Treloar Crescent	PM	0.50	3	13	-

4.4 Access Arrangements

An analysis of the internal access arrangements has been undertaken. The internal queuing for the site will be dependent on the internal site gate located adjacent to the first internal roundabout as shown in Figure 20. The access point is over 50m inside the site and allows for vehicle that turn into the site accidently or vehicles that are not permitted access to easily turn around utilising the roundabout. The offset and the ease of turn around by the roundabout is considered adequate and lot likely to produce any queuing back to the broader road network. Further discussion is provided below.

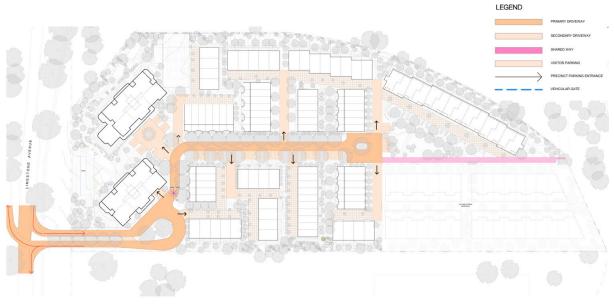


Figure 20: Vehicle Access Paths

Table 9 outlines the queuing determined at the control point of the main access shown above. It has been assumed that the service rate of the gate is 10 seconds per vehicle. The queuing analysis shown has been determined using a probability of less than 2% chance of occurrence, i.e. there is a less than 2% chance of more than the number of vehicles queued arriving at the control point at any one time.

Table 9	Control	Point	Queuing
---------	---------	-------	---------

Location		AM PM		PM	M	
		Ingress	Egress	Ingress	Egress	
Vehicle Access	Peak Arrival Rate (vph)	29	117	117	29	
	Peak Queue (vehicles)	1	3	3	1	

As the gate will likely operate as a shared control for both the inbound and outbound movements from the site, the peak internal queuing of the proposed development has been determined to be 3 vehicles during both the AM peak egress and PM peak ingress. The internal road network has capacity to accommodate this queuing within the site. Even using the conservative approach for ingress timing, this control point will have no impact on the local road network.

Any vehicle that accesses the site by mistake including heavy vehicles will be able to use the roundabout to turn around safely and efficiently.

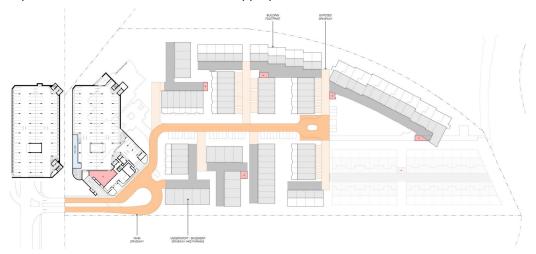
5.0 Car Parking

5.1 Car Parking Requirements

The car parking provision requirements for various types of developments are detailed in the Environment, Planning and Sustainable Development Directorate (EPSDD) (formerly ACTPLA), Parking and Vehicular Access General Code. The code indicates the following parking rates for residential developments in the Campbell area:

- 1 space per 1 bedroom dwelling;
- 1.5 spaces per 2 bedroom dwelling;
- 2 spaces per 3+ bedroom dwelling;
- 0.25 spaces per apartment for visitors (townhouse visitor parking inclusive in existing parking area).

The proposed development site is currently zoned as Community Facilitates and is in the process of rezoning application to allow residential development. Residential parking for this development has been determined using residential zone rates from the Parking and Vehicular Access General Code.


Table 10 outlines the expected peak demand from the development as per the rates above for Stage 1 of the development.

Apartment Type	Number	Rate	Parking Requirement
1 BR	29	1	29
2 BR	92	1.5	138
3+ BR	91	2	182
SUB-TOTAL			349
Visitor*	212	0.25	53
TOTAL			402

 Table 10
 Parking Breakdown Stage 1, S38 Campbell

The parking supply for stage 1 of the development is 558 resident spaces. This includes 337 spaces for townhouses where 3 and 4 bedroom units have 2-4 spaces in under croft and garage parking and 168 spaces for apartments in the building basements.

There are 69 dedicated visitor parking spaces throughout the site, which is 16 spaces above the required 53 spaces. There are also additional provisional parking areas where town house visitors can park in the driveway out the front of the town houses they are visiting or utilise additional on-site supply. Some of these provisional parking areas are shown in Figure 21. These locations are considered suitable and do not impact the safety or amenity of the internal road network. These ancillary parking areas combined with the dedicated visitor parking provide suitable supply for the expected demand and are considered appropriate.

Figure 21 Site Parking Areas

\\AUCBR1FP001\Projects\CBR\60528939\500_DELIV\501_Report\Traffic Impact Assessment_Section 38 Campbell rev8_e.docx Revision 8e – 15-Jan-2020 Prepared for – DOMA GROUP – ABN: 9360 2605 710

5.2 Other Factors

5.2.1 Accessible Parking Provision

Accessible parking will be provided within the parking areas of the development in accordance with the ACT Parking and Vehicular Access General Code that requires 3% of spaces to be provided to be compliant for accessible parking for the public parking spaces. In this proposal, that amounts to 2 spaces (excluding any proposed adaptable housing requirements), to accommodate the accessible requirements for the residential development. The exact location and implementation of these spaces will be refined through the continuing design resolution process.

5.2.2 Motorcycle / Small Vehicle Parking Provision

The parking provision for motorcycles within the site must meet the requirements of the Code. The Code indicates that the site must supply three dedicated spaces per 100 public car spaces. This equates to 2 motorcycle parking spaces. This can be achieved in the proposed design with several areas which could be suitable.

5.3 Car Parking Layout Review

The proposed layout and operation of the basement parking arrangements have been reviewed at a high level in terms of safety and feasibility. The car park review was undertaken on the PDF in reference to AS2980.1 Off-street Car Parking.

The assessment of the car park included a review of the following aspects of the design:

- Bay and aisle width
- Internal queuing
- Car park bay dimensions
- Ramp gradients

The review indicated that the proposed design meets the required standards and will operate in a satisfactory manner. For the town houses, the allocation of visitor spaces as tandem to the resident spaces is considered acceptable and similar to what happens at many sites currently where visitors may park in front of the resident garage or carport.

6.0 Sustainable Transport Infrastructure

6.1 Bicycle End of Trip Facilities

The Bicycle Parking General Code for the ACT was used to determine the required supply of bicycle parking spaces.

According to the code the following supply of bicycle parking spaces must be provided:

For Residential units:

- 1 space per apartment and;
- 1 space per 12 apartments after the first 12 apartments for visitors

A summary of how these supply requirements are applied to both Stage 1 and Stage 2 of this development can be seen in the table below.

 Table 11
 Bicycle Parking Space Supply Requirements Summary

	Yield Employe		ees and Residents		Visitors and Guests			
Land Use	Tielu	Spaces per unit	Class	Subtotal	Spaces per unit	Class	Subtotal	Total
Residential Units	244	1 per apartment	1, 2	244	1/12 after 1 st 12	3	20	264

The bicycle parking spaces for the townhouses proposed for the development will be contained within the townhouses individual parking area.

Bicycle lockers are proposed to be located at the head of residential parking spaces where appropriate. The exact supply of lockers will need to be confirmed during subsequent design stages; however the intent of suppling bicycle parking as shown is supported. The type of bicycle parking to be supplied is Class 1 (lockable) bicycle storage.

The proposed supply option will meet the requirements of the Bicycle Parking General Code.

27

6.2 Walking and Cycling Network

The adjacent walking and cycling network is well established and good site connections from the proposed development to the existing adjacent infrastructure will be provided. A summary of the existing infrastructure that the site will be connecting into is shown in Figure 22.

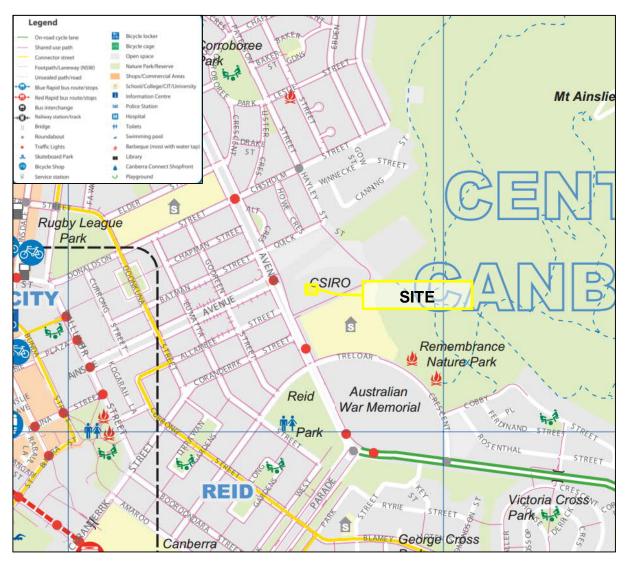
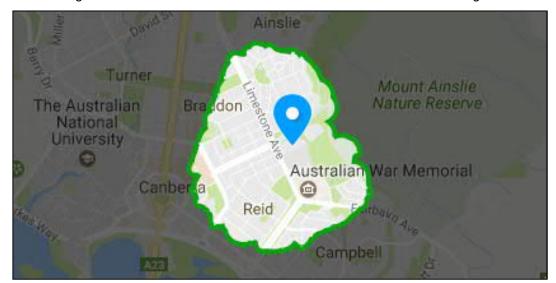



Figure 22: Walking and Cyclist Facilities

6.3 Walkability Score

Depending on the intersection phasing and pedestrian delays crossing Limestone Avenue and Cooyong Street the subject site is about 15-20minutes walk from the Canberra Centre. The subject site has a walk score of 51¹ out of 100. This score indicates that the site is somewhat walkable and that some errands can be accomplished on foot. Points are awarded based on the distance to amenities in each category. Amenities within a 5 minute walk are given maximum points. A decay function is used to give points to more distant amenities, with no points given after a 30 minute walk. Walk Score also measures pedestrian friendliness by analysing population density and road metrics such as block length and intersection density.

The low number of immediately accessible amenities has resulted in a relatively low walkability score for the site.

The walking distance from the site in a 20 minute time frame can be seen in Figure 23.

Figure 23: Site 20min Walk Distance

6.4 Consideration of Alternate Site Access Options

Prior to the decision to retain the existing site access, other various access options were considered for this development. The following outlines the options considered and the justification behind the preferred option of retaining the existing site access.

Table 12 Site Access Options Summary

Site Access Option	Commentary
Signalisation (all movements)	 The site access point is located approximately 150m from the signalised intersection of Limestone Avenue and Ainslie Avenue, and approximately 125m from the signalised pedestrian crossing on Limestone Avenue to the south of the site. Due to the proximity to these existing signals, and with the road environment being an urban distributor road, signalisation at this location would not be preferred. There is a considerable level difference between the southbound carriageway and northbound carriageway in the location of this access point. Construction of an atgrade signalised intersection in this location would be difficult from a safe design perspective. The level difference is shown in the image below. The existing access to Allambee Street from Limestone Avenue may need to be removed due to weaving conflict.
Seagull Intersection (all movements)	 A seagull intersection arrangement in this location has been considered. The level difference in the location of the intersection would make it difficult to design/construct an operationally safe intersection. The right-in movement from Limestone Avenue is likely to have visibility issues between right-in turning vehicles and vehicles exiting the site due to the grade difference. The current operation of the right-out movement has no crash history and is considered safe. Introduction of a right-in movement will introduce additional conflicts which would increase the likelihood of a crash in this location.
Left-in Left-out only	 The option of removing the right-out movement and converting the intersection into a left-in left-out intersection only was also considered. The existing right-out movement is not considered to be an unsafe movement, based on the crash history in this location, with no crashes recorded being attributed to this movement. From this, we see no reason to remove this movement. A left-in left-out arrangement would be a safer alternative to the current arrangement, however would result in redistribution of traffic through the immediate road network.

\\AUCBR1FP001\Projects\CBR\60528939\500_DELIV\501_Report\Traffic Impact Assessment_Section 38 Campbell rev8_e.docx Revision 8e - 15-Jan-2020 Prepared for - DOMA GROUP - ABN: 9360 2605 710 30

Site Access Option	Commentary
Retain Existing Arrangement	 Retaining the existing arrangement allows for most vehicle movements (no right-in), as a result of this there is minimal redistribution of traffic within proximity to the site. The right-out movement does not have any recorded crashes in this location attributable to this movement and is therefore considered to be safe movement. The intersection layout has capacity operate an acceptable level of service given the traffic volumes generated by the proposed development.

As is shown from the discussion above, the preferred option of retaining the existing intersection arrangement is justified due to the geometric constraints of the site, the limitations of the control mechanisms of the other intersection options and the current safe operation of the existing intersection.

7.0 Conclusion

The analysis and relevant discussion in this report led to the following conclusions:

- The parking requirement as per the code requirements for Stage 1 of the proposed development is 402 car spaces to accommodate the residential land use.
- The on-site parking supply is sufficient for the proposed development.
- The site has an expected traffic generation of up to 146 vehicles in the AM and PM peak hours.
- Based on a review of safety, capacity and constructability, the existing access arrangement for the site and recommended to be retained.
- There is adequate capacity in the surrounding existing local road network to accommodate the traffic generated by the proposed development. The additional traffic proposed on Limestone Avenue has a minimal effect on queuing and delays at the key intersections as demonstrated by the modelling developed.
- Provision is made for all access arrangements to operate safely and efficiently in compliance with AS2890.1.
- Although the right turn movement from the site has impeded sightlines, the crash data did not identify any crashes associated with this movement or indicate that this movement is a high-risk movement.
- The provision for bicycle facilities will be met on site through secure parking areas consistent with the Bicycle Parking General Code.

Appendix A

Detailed Crash Diagram

AECOM

15/11/2016 17:30 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Same direction side swipe Crash Severity: Property Damage Only

06/08/2014 16:57 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision Crash Severity: Property Damage Only

Section States

03/05/2013 08:05 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision Crash Severity: Property Damage Only

17/03/2012 22:15 Road Condition: Wet surface Weather Condition: Light rain Accident Type: Rear end collision Crash Severity: Property Damage Only

04/04/2014 15:30

Road Condition: Wet surface Weather Condition: Light rain Accident Type: Rear end collision Crash Severity: Property Damage Only

25 151 - - 22

23/11/2015 16:30 Road Condition: Good dry surface Weather Condition: Fine

Accident Type: Rear end collision Crash Severity: Property Damage Only

14/02/2012 07:45 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision Crash Severity: Property Damage Only

23/04/2012 17:30 Road Condition: Wet surface Weather Condition: Cloudy or overcast Accident Type: Rear end collision Crash Severity: Property Damage Only

19/04/2014 18:00 Road Condition: Wet surface Weather Condition: Heavy rain Accident Type: Rear end collision Crash Severity: Property Damage Only

24/07/2013 17:30 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision Crash Severity: Property Damage Only

14/03/2013 08:20 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision Crash Severity: Injury

21/06/2016 17:07 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right turn into oncoming vehicle Crash Severity: Property Damage Only

16/09/2014 17:25 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision Crash Severity: Property Damage Only

07/08/2015 19:38 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision Crash Severity: Property Damage Only 24/12/2016 09:30 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Collision while one vehicle reversing Crash Severity: Property Damage Only

24/06/2015 17:55 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collison Crash Severity: Property Damage Only

06/05/2014 08:55 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision Crash Severity: Property Damage Only

21/11/2013 08:55

Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision Crash Severity: Injury

Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision Crash Severity: Property Damage Only

02/06/2012 11:58 Road Condition: Wet surface Weather Condition: Light rain Accident Type: Rear end collision Crash Severity: Property Damage Only

> 12/06/2015 18:15 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision Crash Severity: Property Damage Only

09/09/2016 10:30 Road Condition: Wet surface Weather Condition: Light rain Accident Type: Rear end collision Crash Severity: Property Damage Only

> 06/03/2012 08:50 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision Crash Severity: Property Damage Only

31/03/2014 18:50 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision Crash Severity: Property Damage Only

02/06/2016 20:00 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Struck animal (not ridden on road) Crash Severity: Property Damage Only

01/10/2012 14:46 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision Crash Severity: Property Damage Only

27/11/2012 17:00 Road Condition: Wet surface Weather Condition: Heavy rain Accident Type: Rear end collision Crash Severity: Injury

07/08/2014 09:10 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision Crash Severity: Injury

18/08/2015 15:15 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision Crash Severity: Property damage only

18/09/2016 16:10 Road Condition: Wet surface Weather Condition: Light rain Accident Type: Right angle collision Crash Severity: Property damage only

11/04/2013 07:50 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Other vehicle-to-vehicle collision Crash Severity: Property Damage Only

07/08/2015 19:38 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision Crash Severity: Property Damage Only

07/08/2015 19:38 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision

28/06/2015 18:05 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rightangle collision

08/12/2013 13:15 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision

13/03/2015 10:20 Road Condition: Good dry surface Neather Condition: Fine Accident Type: Right angle collision Crash Severity: Property Damage Only

Crash Severity: Property Damage Only

Crash Severity: Property Damage Only

Crash Severity: Injury

15/11/2016 10:45 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision Crash Severity: Injury

HA BARA

08/06/2012 19:15 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision collision Crash Severity: Property Damage Only 01/09/2013 11:35 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision Crash Severity: Injury

12/02/2014 08:40 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Rear end collision collision Crash Severity: Property Damage Only Accident Type: Rear end collision Crash Severity: Property Damage Only

Road Condition: Good dry surface

Accident Type: Right angle collision

Crash Severity: Property Damage Only

03/11/2013 07:50

16/12/2013 17:59

Weather Condition: Fine

Road Condition: Wet surface

Weather Condition: Light rain

17/05/2014 15:47 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Same direction side swipe collision Crash Severity: Property Damage Only

27/07/2015 14:10 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collison collision Crash Severity: Property Damage Only

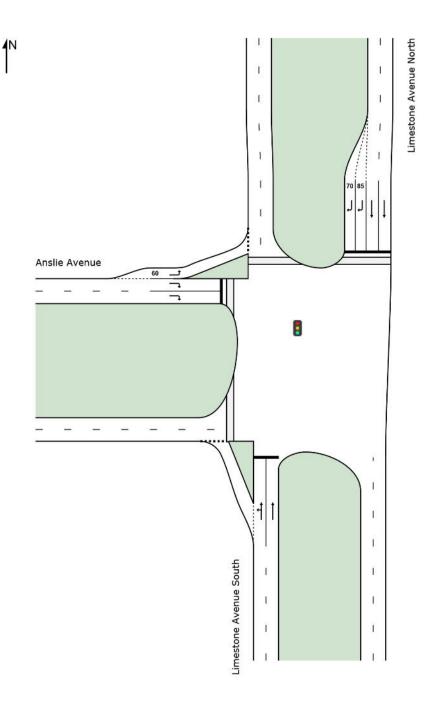
22/04/2016 14:00 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision Crash Severity: Property damage only

23/04/2015 12:23 Road Condition: Good dry surface Weather Condition: Fine Accident Type: Right angle collision Crash Severity: Injury

Crash Severity (2012-2016)

Property Damage Only

CAMPBELL, SECTION 38 CRASH PLOT (2012-2016) AUGUST 2018



Appendix **B**

SIDRA Outputs

Site: [Limestone Avenue_Ainslie Avenue]

AM Existing Site Category: (None) Signals - Fixed Time Coordinated

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Created: Wednesday, 7 August 2019 4:47:44 PM Project: Not Saved

Site: [Limestone Avenue_Ainslie Avenue]

AM Existing Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Move	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival		Deg. Satn	Average Delay	Level of Service	95% B Que		Prop. Queued	Effective Stop	Aver. Aver. Aver. Aver. Aver. No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles veh	Distance m		Rate	Cycles S	Speed km/h
South	n: Lime	stone Aver	nue So	outh										
1	L2	102	0.0	102	0.0	0.408	16.8	LOS B	9.2	64.5	0.41	0.46	0.51	49.2
2	T1	767	0.0	767	0.0	0.408	11.6	LOS A	9.9	69.0	0.42	0.41	0.46	50.0
Appro	bach	869	0.0	869	0.0	0.408	12.2	LOS A	9.9	69.0	0.42	0.41	0.47	49.9
North	: Limes	stone Aven	ue No	rth										
8	T1	2042	0.0	2042	0.0	0.648	0.5	LOSA	3.2	22.4	0.06	0.06	0.06	59.0
9	R2	309	0.0	309	0.0	0.406	50.3	LOS D	7.4	52.1	0.86	0.78	0.86	32.5
Appro	bach	2351	0.0	2351	0.0	0.648	7.1	LOS A	7.4	52.1	0.16	0.15	0.16	49.8
West	: Anslie	Avenue												
10	L2	52	0.0	52	0.0	0.050	5.8	LOSA	0.0	0.3	0.02	0.55	0.02	54.2
12	R2	133	0.0	133	0.0	0.354	61.7	LOS E	3.7	25.7	0.95	0.75	0.95	20.0
Appro	bach	185	0.0	185	0.0	0.354	46.0	LOS D	3.7	25.7	0.69	0.70	0.69	27.7
All Ve	hicles	3405	0.0	3405	0.0	0.648	10.5	LOSA	9.9	69.0	0.26	0.25	0.27	47.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance -	Pedestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P31	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95
P32	North Stage 2	53	27.4	LOS C	0.1	0.1	0.68	0.68
P41	West Stage 1	53	3.3	LOS A	0.0	0.0	0.23	0.23
P42	West Stage 2	53	14.5	LOS B	0.1	0.1	0.49	0.49
All Pe	destrians	211	24.9	LOS C			0.59	0.59

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 7 August 2019 3:55:35 PM Project: Not Saved

Site: [Limestone Avenue_Ainslie Avenue (2)]

PM Existing Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Move	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% B Que		Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles veh	Distance m		Rate	Cycles S	Speed km/h
South	n: Lime	stone Aver	nue Sc	outh										
1	L2	120	0.0	120	0.0	0.573	7.7	LOSA	5.5	38.4	0.13	0.21	0.21	56.5
2	T1	1458	0.0	1458	0.0	0.573	2.3	LOSA	6.5	45.6	0.15	0.17	0.18	57.5
Appro	bach	1578	0.0	1578	0.0	0.573	2.7	LOS A	6.5	45.6	0.14	0.18	0.18	57.4
North	: Limes	stone Aven	ue No	rth										
8	T1	854	0.0	854	0.0	0.271	0.3	LOS A	0.7	4.6	0.03	0.03	0.03	59.4
9	R2	111	0.0	111	0.0	0.607	70.8	LOS F	3.4	24.0	1.00	0.77	1.06	27.5
Appro	bach	965	0.0	965	0.0	0.607	8.4	LOS A	3.4	24.0	0.14	0.11	0.15	48.1
West	: Anslie	Avenue												
10	L2	351	0.0	351	0.0	0.518	5.9	LOS A	0.7	4.7	0.05	0.57	0.05	54.1
12	R2	174	0.0	174	0.0	0.464	62.5	LOS E	4.9	34.2	0.97	0.77	0.97	19.9
Appro	bach	525	0.0	525	0.0	0.518	24.6	LOS B	4.9	34.2	0.35	0.63	0.35	40.2
All Ve	hicles	3068	0.0	3068	0.0	0.607	8.2	LOS A	6.5	45.6	0.18	0.23	0.20	51.5

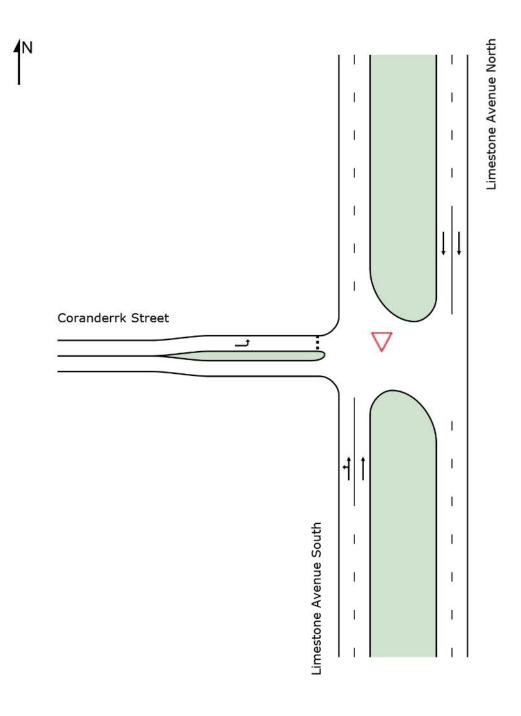
Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


Move	ment Performance -	Pedestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Bacl Pedestrian ped	k of Queue Distance m	Prop. Queued	Effective Stop Rate
P31	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95
P32	North Stage 2	53	41.8	LOS E	0.1	0.1	0.84	0.84
P41	West Stage 1	53	3.3	LOSA	0.0	0.0	0.23	0.23
P42	West Stage 2	53	6.7	LOS A	0.1	0.1	0.33	0.33
All Pe	destrians	211	26.5	LOS C			0.59	0.59

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 7 August 2019 3:55:41 PM Project: Not Saved

▽ Site: [Limestone Avenue_Coranderrk Street]

AM Existing Site Category: (None) Giveway / Yield (Two-Way)

V Site: [Limestone Avenue_Coranderrk Street]

AM Existing Site Category: (None) Giveway / Yield (Two-Way)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand				Deg. Satn	Average Delay	Level of Service	95% B Que	eue	Prop. Queued	Effective Stop	No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles veh	Distance m		Rate	Cycles S	Speed km/h
South	n: Lime	stone Ave	nue Sc	outh										
1	L2	30	0.0	30	0.0	0.237	5.6	LOS A	0.0	0.0	0.00	0.04	0.00	58.0
2	T1	891	0.0	891	0.0	0.237	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	59.6
Appro	bach	921	0.0	921	0.0	0.237	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.5
North	: Limes	stone Aver	nue No	rth										
8	T1	2175	0.0	2175	0.0	0.558	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Appro	bach	2175	0.0	2175	0.0	0.558	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8
West	Corar	derrk Stre	et											
10	L2	30	0.0	30	0.0	0.035	7.5	LOS A	0.1	0.9	0.44	0.65	0.44	48.3
Appro	bach	30	0.0	30	0.0	0.035	7.5	LOS A	0.1	0.9	0.44	0.65	0.44	48.3
All Ve	hicles	3126	0.0	3126	0.0	0.558	0.2	NA	0.1	0.9	0.00	0.01	0.00	59.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 7 August 2019 3:55:35 PM Project: Not Saved

V Site: [Limestone Avenue_Coranderrk Street (2)]

PM Existing Site Category: (None) Giveway / Yield (Two-Way)

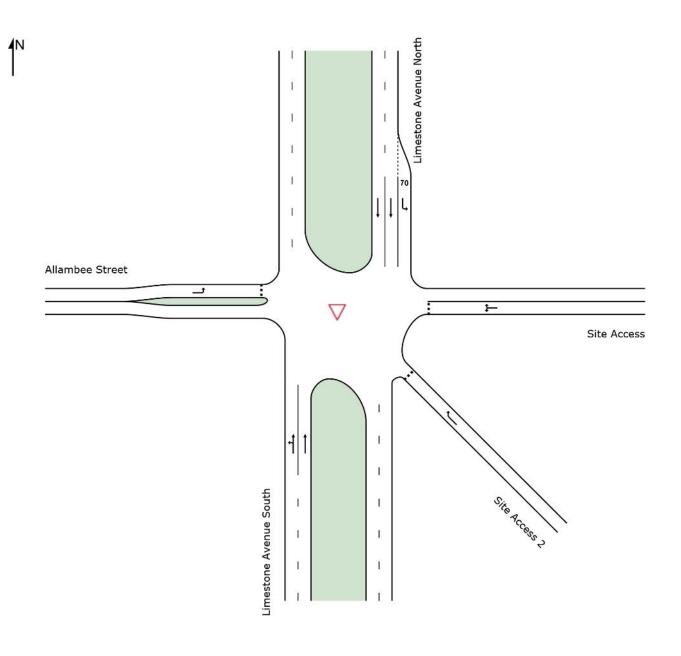
Move	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand				Deg. Satn	Average Delay	Level of Service	95% B Que	eue	Prop. Queued	Effective Stop	Aver. A No.	e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles veh	Distance		Rate	Cycles S	speed km/h
South	1: Lime	stone Aver	nue Sc	outh										
1	L2	40	0.0	40	0.0	0.435	5.6	LOS A	0.0	0.0	0.00	0.03	0.00	58.0
2	T1	1656	0.0	1656	0.0	0.435	0.1	LOS A	0.0	0.0	0.00	0.01	0.00	59.6
Appro	bach	1696	0.0	1696	0.0	0.435	0.2	NA	0.0	0.0	0.00	0.01	0.00	59.6
North	: Limes	stone Aven	ue No	rth										
8	T1	1028	0.0	1028	0.0	0.264	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1028	0.0	1028	0.0	0.264	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	Corar	nderrk Stre	et											
10	L2	40	0.0	40	0.0	0.075	10.9	LOS A	0.3	1.9	0.62	0.83	0.62	44.3
Appro	bach	40	0.0	40	0.0	0.075	10.9	LOS A	0.3	1.9	0.62	0.83	0.62	44.3
All Ve	hicles	2764	0.0	2764	0.0	0.435	0.3	NA	0.3	1.9	0.01	0.02	0.01	59.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.


Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 7 August 2019 3:55:41 PM Project: Not Saved

▽ Site: [Limestone Avenue_Allambee Street_Site Access]

AM Existing Site Category: (None) Giveway / Yield (Two-Way)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Created: Wednesday, 7 August 2019 4:49:56 PM Project: Not Saved

Site: [Limestone Avenue_Allambee Street_Site Access]

+ Network: 1 [Existing AM]

AM Existing Site Category: (None) Giveway / Yield (Two-Way)

Mov	emen	t Performa	ance	- Vehio	cles									
Mov ID	Turn	Demand F	lows	Arrival		Deg. Satn	Average Delay	Level of Service	95% Bacł Queue		Prop. Queued	Effective Stop	Aver. A No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles Dis veh	tance m		Rate	Cycles S	Speed km/h
South	n: Lime	stone Aven			/0	110	000		Ven					KIII/II
1	L2	20	0.0	20	0.0	0.234	5.6	LOSA	0.0	0.0	0.00	0.03	0.00	58.1
2	T1	891	0.0	891	0.0	0.234	0.0	LOSA	0.0	0.0	0.00	0.01	0.00	59.7
Appro	bach	911	0.0	911	0.0	0.234	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.6
South	nEast:	Site Access	32											
23a	R1	1	0.0	1	0.0	0.002	9.7	LOS A	0.0	0.0	0.54	0.55	0.54	45.7
Appro	bach	1	0.0	1	0.0	0.002	9.7	LOSA	0.0	0.0	0.54	0.55	0.54	45.7
East:	Site A	ccess												
4	L2	1	0.0	1	0.0	0.008	14.2	LOSA	0.0	0.2	0.83	0.76	0.83	34.4
6	R2	1	0.0	1	0.0	0.008	31.8	LOS C	0.0	0.2	0.83	0.76	0.83	34.4
Appro	bach	2	0.0	2	0.0	0.008	23.0	LOS B	0.0	0.2	0.83	0.76	0.83	34.4
North	: Lime	stone Aven	ue No	rth										
7	L2	1	0.0	1	0.0	0.001	5.5	LOSA	0.0	0.0	0.00	0.58	0.00	53.6
8	T1	2175	0.0	2175	0.0	0.558	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Appro	bach	2176	0.0	2176	0.0	0.558	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8
West	: Allam	bee Street												
10	L2	20	0.0	20	0.0	0.013	7.0	LOS A	0.1	0.6	0.26	0.54	0.26	48.9
Appro	bach	20	0.0	20	0.0	0.013	7.0	LOS A	0.1	0.6	0.26	0.54	0.26	48.9
All Ve	hicles	3110	0.0	3110	0.0	0.558	0.2	NA	0.1	0.6	0.00	0.01	0.00	59.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 7 August 2019 3:55:35 PM Project: Not Saved

V Site: [Limestone Avenue_Allambee Street_Site Access (2)]

♦ Network: 1 [Existing PM]

PM Existing Site Category: (None) Giveway / Yield (Two-Way)

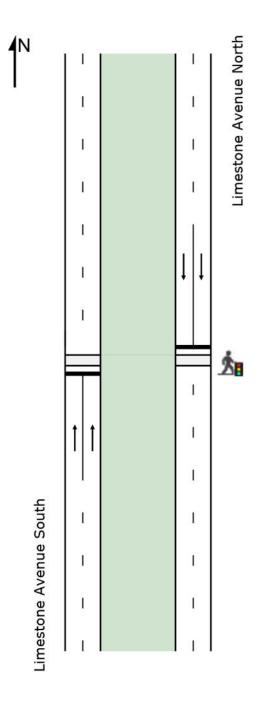
Mov	ement	t Performa	ance	- Vehi	cles									
Mov	Turn	Demand F	lows	Arrival	Flows	Deg.	Average		95% Bac		Prop.	Effective	Aver. A	
ID		Total		Total	ΗV	Satn	Delay	Service	Queu Vehicles Di		Queued	Stop	No.	e
		veh/h		veh/h	пv %	v/c	sec		venicies Di veh	m		Rate	Cycles S	km/h
South	n: Lime	stone Aven		-	70	110	000		VCII					KITI/TT
1	L2	30	0.0	30	0.0	0.433	5.6	LOSA	0.0	0.0	0.00	0.02	0.00	58.1
2	T1	1656	0.0	1656	0.0	0.433	0.1	LOS A	0.0	0.0	0.00	0.01	0.00	59.7
Appro	oach	1686	0.0	1686	0.0	0.433	0.2	NA	0.0	0.0	0.00	0.01	0.00	59.6
South	nEast:	Site Access	5 2											
23a	R1	1	0.0	1	0.0	0.005	21.8	LOS B	0.0	0.1	0.81	0.75	0.81	35.2
Appro	oach	1	0.0	1	0.0	0.005	21.8	LOS B	0.0	0.1	0.81	0.75	0.81	35.2
East:	Site A	ccess												
4	L2	1	0.0	1	0.0	0.003	7.9	LOSA	0.0	0.1	0.52	0.58	0.52	45.5
6	R2	1	0.0	1	0.0	0.003	11.9	LOS A	0.0	0.1	0.52	0.58	0.52	45.5
Appro	oach	2	0.0	2	0.0	0.003	9.9	LOS A	0.0	0.1	0.52	0.58	0.52	45.5
North	: Lime	stone Aven	ue No	rth										
7	L2	1	0.0	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.00	0.58	0.00	53.6
8	T1	1028	0.0	1028	0.0	0.264	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	oach	1029	0.0	1029	0.0	0.264	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	: Allam	bee Street												
10	L2	30	0.0	30	0.0	0.027	9.4	LOS A	0.2	1.1	0.48	0.58	0.48	46.1
Appro	bach	30	0.0	30	0.0	0.027	9.4	LOSA	0.2	1.1	0.48	0.58	0.48	46.1
All Ve	hicles	2748	0.0	2748	0.0	0.433	0.2	NA	0.2	1.1	0.01	0.01	0.01	59.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.


Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 7 August 2019 3:55:41 PM Project: Not Saved

Site: [Limestone Avenue_Pedestrian Crossing]

AM Existing Site Category: (None) Pedestrian Crossing (Signals) - Fixed Time Isolated

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Created: Wednesday, 7 August 2019 4:51:10 PM Project: Not Saved

Site: [Limestone Avenue_Pedestrian Crossing]

AM Existing Site Category: (None)

Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 30 seconds (Site Practical Cycle Time)

Mov	ement	Performa	ance ·	- Vehic	les									
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Ba Que		Prop. Queued	Effective Stop	Aver. A No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles [veh	Distance m		Rate	Cycles S	Speed km/h
South	n: Lime	stone Aven			/0	V/C	300		VCII					KI17/11
2	T1	891	0.0	891	0.0	0.326	1.9	LOS A	2.6	18.2	0.41	0.36	0.41	56.4
Appro	oach	891	0.0	891	0.0	0.326	1.9	LOS A	2.6	18.2	0.41	0.36	0.41	56.4
North	: Limes	stone Aven	ue No	rth										
8	T1	2175	0.0	2175	0.0	0.797	6.9	LOS A	14.3	99.9	0.73	0.78	0.91	48.9
Appro	oach	2175	0.0	2175	0.0	0.797	6.9	LOS A	14.3	99.9	0.73	0.78	0.91	48.9
All Ve	ehicles	3066	0.0	3066	0.0	0.797	5.5	LOS A	14.3	99.9	0.64	0.66	0.77	50.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance -	Pedestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P11	South Stage 1	21	9.6	LOS A	0.0	0.0	0.80	0.80
P12	South Stage 2	21	9.6	LOS A	0.0	0.0	0.80	0.80
All Pe	destrians	42	9.6	LOS A			0.80	0.80

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 7 August 2019 3:55:35 PM Project: Not Saved

Site: [Limestone Avenue_Pedestrian Crossing (2)]

+ Network: 1 [Existing PM]

PM Existing Site Category: (None)

Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 20 seconds (Site Practical Cycle Time)

Mov	ement	Performa	ance -	· Vehic	les									
Mov ID	Turn	Demand F	-lows /	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% B Que		Prop. Queued	Effective Stop	Aver. A No.	Averag e
		Total	ΗV	Total	ΗV				Vehicles	Distance		Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Lime	stone Aven	ue So	uth										
2	T1	1656	0.0	1656	0.0	0.708	4.4	LOSA	6.9	48.0	0.74	0.73	0.89	52.4
Appro	oach	1656	0.0	1656	0.0	0.708	4.4	LOS A	6.9	48.0	0.74	0.73	0.89	52.4
North	: Limes	stone Aven	ue Noi	rth										
8	T1	1028	0.0	1028	0.0	0.439	2.5	LOS A	2.9	20.2	0.58	0.50	0.58	55.3
Appro	oach	1028	0.0	1028	0.0	0.439	2.5	LOS A	2.9	20.2	0.58	0.50	0.58	55.3
All Ve	ehicles	2684	0.0	2684	0.0	0.708	3.7	LOS A	6.9	48.0	0.68	0.64	0.77	53.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

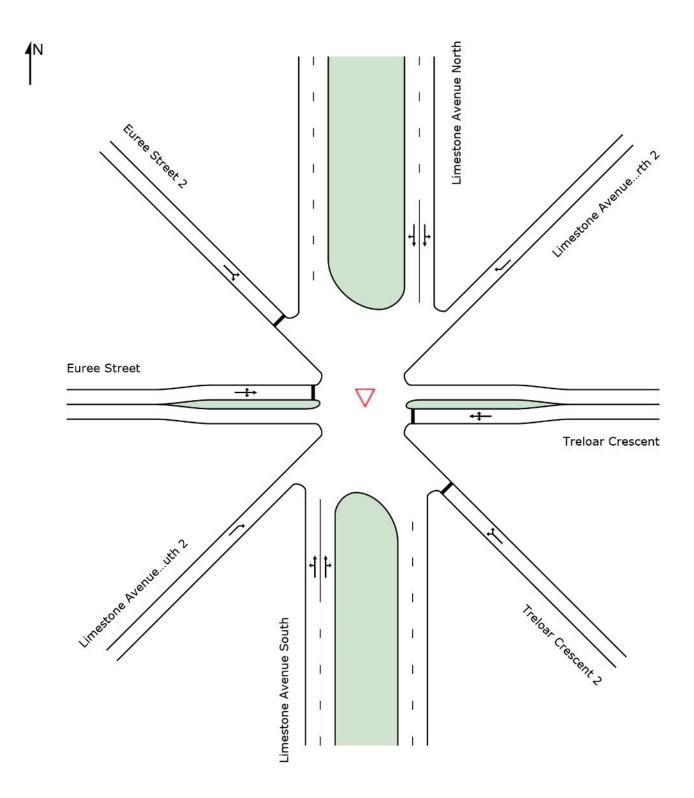
Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - I	Pedestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P11	South Stage 1	21	4.9	LOS A	0.0	0.0	0.70	0.70
P12	South Stage 2	21	4.9	LOS A	0.0	0.0	0.70	0.70
All Pe	destrians	42	4.9	LOS A			0.70	0.70


Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 7 August 2019 3:55:41 PM Project: Not Saved

∇ Site: [Limestone Avenue_Euree Street_Treloar Crescent]

AM Existing Site Category: (None) Giveway / Yield (Two-Way)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Created: Wednesday, 7 August 2019 4:52:47 PM Project: Not Saved

Site: [Limestone Avenue_Euree Street_Treloar Crescent]

+ Network: 1 [Existing AM]

AM Existing Site Category: (None) Giveway / Yield (Two-Way)

Move	ement	Performa	ance ·	- Vehio	les									
	Turn	Demand I	Flows	Arrival	Flows	Deg.	Average		95% Bac		Prop.	Effective	Aver. A	
ID		Total	ΗV	Total	ΗV	Satn	Delay	Service	Queu Vehicles Di		Queued	Stop Rate	No. Cycles S	e Speed
Ocutto		veh/h		veh/h	%	v/c	sec		veh	m			· ·	km/h
Soutr	1: Lime L2	stone Aver 6	iue So 0.0	utn 6	0.0	0.226	5.6	LOSA	0.0	0.0	0.00	0.01	0.00	58.3
2	T1	850	0.0	850	0.0	0.220	0.0	LOSA	0.0	0.0	0.00	0.01	0.00	58.5 59.6
3	R2	23	0.0	23	0.0	0.226	5.5	LOSA	0.0	0.0	0.00	0.02	0.00	57.8
Appro		879	0.0	879	0.0	0.226	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.5
		Treloar Cre												
21a	L1	3	0.0	2 3	0.0	0.091	11.2	LOSA	0.3	2.2	0.59	1.01	0.59	48.1
23a	R1	34	0.0	34	0.0	0.091	16.5	LOS B	0.3	2.2	0.59	1.01	0.59	41.3
Appro		37	0.0	37	0.0	0.091	16.0	LOS B	0.3	2.2	0.59	1.01	0.59	42.1
Fast	Treloa	r Crescent												
4	L2	6	0.0	6	0.0	0.491	29.7	LOS C	1.5	10.7	0.95	1.04	1.10	29.0
5	T1	3	0.0	3	0.0	0.491	61.8	LOS E	1.5	10.7	0.95	1.04	1.10	29.1
6	R2	34	0.0	34	0.0	0.491	71.8	LOS F	1.5	10.7	0.95	1.04	1.10	19.7
Appro	bach	43	0.0	43	0.0	0.491	65.2	LOS E	1.5	10.7	0.95	1.04	1.10	22.1
North	East: L	imestone /	Avenue	e North	2									
26a	R1	41	0.0	41	0.0	0.037	6.3	LOS A	0.1	1.0	0.39	0.55	0.39	53.9
Appro	bach	41	0.0	41	0.0	0.037	6.3	NA	0.1	1.0	0.39	0.55	0.39	53.9
North	: Limes	stone Aven	ue No	rth										
7	L2	126	0.0	126	0.0	0.551	5.6	LOS A	0.0	0.0	0.00	0.07	0.00	57.6
8	T1	1972		1972	0.0	0.551	0.1	LOS A	0.0	0.0	0.00	0.05	0.00	59.4
9	R2	41	0.0	41	0.0	0.551	5.6	LOS A	0.0	0.0	0.00	0.02	0.00	57.7
Appro	bach	2139	0.0	2139	0.0	0.551	0.5	NA	0.0	0.0	0.00	0.05	0.00	59.3
		Euree Stre												
27a	L1	7	0.0	7	0.0	0.034	21.2	LOS B	0.1	0.8	0.85	0.98	0.85	43.1
29a	R1	1	0.0	1	0.0	0.034	58.1	LOSE	0.1	0.8	0.85	0.98	0.85	43.2
Appro		8	0.0	8	0.0	0.034	25.8	LOS B	0.1	0.8	0.85	0.98	0.85	43.1
		Street												
10	L2	7	0.0	7	0.0	0.024	10.4	LOS A	0.1	0.6	0.51	0.86	0.51	43.5
11	T1	7	0.0	7	0.0	0.024	15.0	LOS B	0.1	0.6	0.51	0.86	0.51	49.3
12	R2	1	0.0	1	0.0	0.024	15.2	LOSA	0.1	0.6	0.51	0.86	0.51	48.9
Appro		15	0.0	15	0.0	0.024	12.9	LOS A	0.1	0.6	0.51	0.86	0.51	47.3
		Limestone												
32a	R1	23	0.0	23	0.0	0.056	14.0	LOSA	0.2	1.3	0.78	0.87	0.78	48.4
Appro	bach	23	0.0	23	0.0	0.056	14.0	NA	0.2	1.3	0.78	0.87	0.78	48.4
All Ve	hicles	3185	0.0	3185	0.0	0.551	1.8	NA	1.5	10.7	0.03	0.08	0.04	57.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 7 August 2019 3:55:35 PM Project: Not Saved

♥ Site: [Limestone Avenue_Euree Street_Treloar Crescent

♦ Network: 1 [Existing PM]

(2)]

PM Existing Site Category: (None)

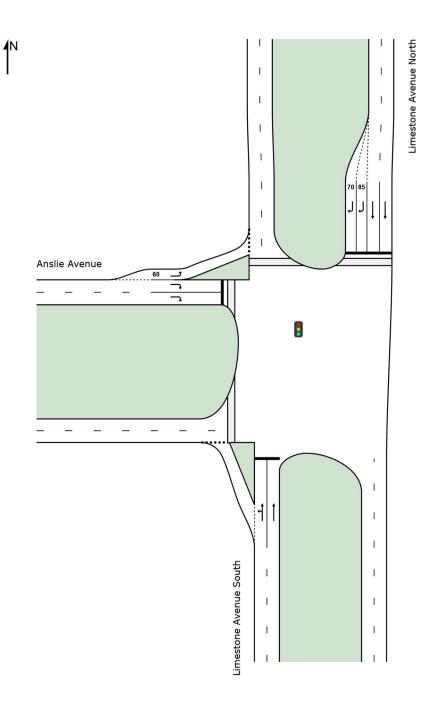
Giveway / Yield (Two-Way)

Mov	ement	Performa	ance	- Vehio	cles									
Mov ID	Turn	Demand F	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Bao Queu		Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total	ΗV	Total	ΗV	Call	Delay		Vehicles Di		Queucu	Rate	Cycles	
		veh/h		veh/h	%	v/c	sec		veh	m				· km/h
		stone Aven												
1	L2	17	0.0	17	0.0	0.403	5.6	LOSA	0.0	0.0	0.00	0.01	0.00	58.2
2	T1	1549			0.0	0.403	0.1	LOSA	0.0	0.0	0.00	0.01	0.00	59.7
3	R2	4	0.0	4	0.0	0.403	5.6	LOSA	0.0	0.0	0.00	0.00	0.00	58.0
Appro	bach	1570	0.0	1570	0.0	0.403	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.7
South		Freloar Cre		2										
21a	L1	3	0.0	3	0.0	0.437	19.4	LOS B	1.5	10.7	0.89	1.06	1.04	37.9
23a	R1	69	0.0	69	0.0	0.437	38.4	LOS C	1.5	10.7	0.89	1.06	1.04	28.4
Appro	bach	72	0.0	72	0.0	0.437	37.6	LOS C	1.5	10.7	0.89	1.06	1.04	28.9
East:	Treloa	r Crescent												
4	L2	62	0.0	62	0.0	0.271	11.5	LOS A	1.1	7.8	0.62	0.96	0.64	47.8
5	T1	6	0.0	6	0.0	0.271	17.4	LOS B	1.1	7.8	0.62	0.96	0.64	48.0
6	R2	69	0.0	69	0.0	0.271	18.0	LOS B	1.1	7.8	0.62	0.96	0.64	41.5
Appro	bach	137	0.0	137	0.0	0.271	15.0	LOS B	1.1	7.8	0.62	0.96	0.64	45.5
North	East: L	imestone A	Avenu	e North	2									
26a	R1	9	0.0	9	0.0	0.013	9.2	LOS A	0.0	0.3	0.63	0.66	0.63	51.8
Appro	bach	9	0.0	9	0.0	0.013	9.2	NA	0.0	0.3	0.63	0.66	0.63	51.8
North	: Limes	tone Aven	ue No	rth										
7	L2	69	0.0	69	0.0	0.257	5.6	LOS A	0.0	0.0	0.00	0.08	0.00	57.6
8	T1	921	0.0	921	0.0	0.257	0.0	LOS A	0.0	0.0	0.00	0.04	0.00	59.5
9	R2	9	0.0	9	0.0	0.257	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	57.9
Appro	bach	999	0.0	999	0.0	0.257	0.5	NA	0.0	0.0	0.00	0.05	0.00	59.4
North	West: I	Euree Stre	et 2											
27a	L1	5	0.0	5	0.0	0.014	11.5	LOS A	0.0	0.3	0.54	0.91	0.54	49.6
29a	R1	3	0.0	3	0.0	0.014	16.9	LOS B	0.0	0.3	0.54	0.91	0.54	49.8
Appro	bach	8	0.0	8	0.0	0.014	13.5	LOS A	0.0	0.3	0.54	0.91	0.54	49.7
West	: Euree	Street												
10	L2	38	0.0	38	0.0	0.107	14.6	LOS B	0.4	2.7	0.73	0.96	0.73	39.7
11	T1	5	0.0	5	0.0	0.107	28.6	LOS C	0.4	2.7	0.73	0.96	0.73	46.8
12	R2	3	0.0	3	0.0	0.107	32.0	LOS C	0.4	2.7	0.73	0.96	0.73	46.5
Appro		46	0.0	46	0.0	0.107	17.3	LOS B	0.4	2.7	0.73	0.96	0.73	41.6
South	West:	Limestone	Avenu	ue Sout	th 2									
32a	R1	4	0.0	4	0.0	0.004	6.6	LOS A	0.0	0.1	0.43	0.51	0.43	53.7
Appro	bach	4	0.0	4	0.0	0.004	6.6	NA	0.0	0.1	0.43	0.51	0.43	53.7
All Ve	hicles	2845	0.0	2845	0.0	0.437	2.3	NA	1.5	10.7	0.07	0.11	0.07	57.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.


SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 7 August 2019 3:55:41 PM Project: Not Saved

Site: [Limestone Avenue_Ainslie Avenue AM]

AM Proposed Site Category: (None) Signals - Fixed Time Coordinated

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Created: Thursday, 19 December 2019 10:02:03 AM Project: \\AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

Site: [Limestone Avenue_Ainslie Avenue AM]

AM Proposed Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Move	Movement Performance - Vehicles Mov Turn Demand Flows Arrival Flows Deg. Average Level of 95% Back of Prop. Effective Aver. Averag													
Mov ID	Turn	Demand	Flows	Arrival		Deg. Satn	Average Delay	Level of Service	95% Ba Que		Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles I veh	Distance m		Rate	Cycles S	Speed km/h
South	n: Lime	stone Aver	nue So	outh										
1	L2	139	0.0	139	0.0	0.440	15.4	LOS B	9.5	66.6	0.39	0.46	0.49	50.0
2	T1	827	0.0	827	0.0	0.440	10.5	LOS A	10.6	74.1	0.40	0.40	0.44	50.8
Appro	bach	966	0.0	966	0.0	0.440	11.2	LOS A	10.6	74.1	0.40	0.41	0.45	50.6
North	: Limes	stone Aven	ue No	rth										
8	T1	2100	0.0	2100	0.0	0.666	0.5	LOS A	3.5	24.2	0.06	0.06	0.06	59.0
9	R2	317	0.0	317	0.0	0.452	52.4	LOS D	7.9	55.5	0.89	0.79	0.89	31.9
Appro	bach	2417	0.0	2417	0.0	0.666	7.3	LOS A	7.9	55.5	0.17	0.15	0.17	49.4
West:	Anslie	Avenue												
10	L2	53	0.0	53	0.0	0.053	5.8	LOS A	0.0	0.3	0.02	0.55	0.02	54.2
12	R2	154	0.0	154	0.0	0.410	62.1	LOS E	4.3	30.0	0.96	0.76	0.96	20.0
Appro	bach	207	0.0	207	0.0	0.410	47.7	LOS D	4.3	30.0	0.72	0.71	0.72	26.8
All Ve	hicles	3590	0.0	3590	0.0	0.666	10.7	LOS A	10.6	74.1	0.26	0.26	0.28	47.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P31	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95					
P32	North Stage 2	53	28.8	LOS C	0.1	0.1	0.69	0.69					
P41	West Stage 1	53	3.3	LOS A	0.0	0.0	0.23	0.23					
P42	West Stage 2	53	13.6	LOS B	0.1	0.1	0.48	0.48					
All Pe	destrians	211	25.0	LOS C			0.59	0.59					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

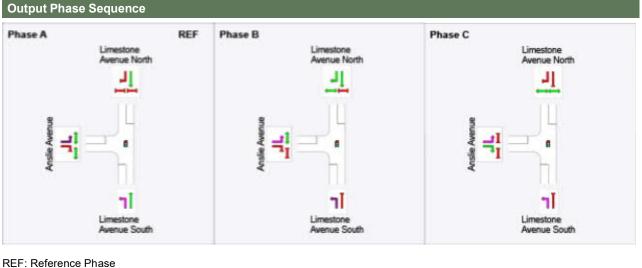
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:22 AM Project: \AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

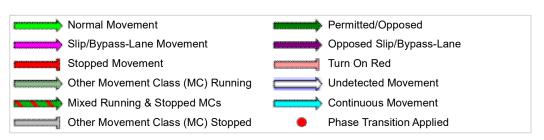
PHASING SUMMARY

Site: [Limestone Avenue_Ainslie Avenue AM]

Image: Image: Provide the second s


AM Proposed Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	73	102
Green Time (sec)	67	23	12
Phase Time (sec)	73	29	18
Phase Split	61%	24%	15%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:22 AM Project: \AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

Site: [Limestone Avenue_Ainslie Avenue PM]

PM Proposed Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Move	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Ba Que		Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles veh	Distance m		Rate	Cycles S	Speed km/h
South	n: Lime	stone Aver	nue Sc	outh										
1	L2	134	0.0	134	0.0	0.612	8.3	LOS A	7.4	52.0	0.17	0.24	0.25	56.0
2	T1	1531	0.0	1531	0.0	0.612	2.9	LOS A	8.6	60.0	0.18	0.21	0.22	56.9
Appro	bach	1665	0.0	1665	0.0	0.612	3.3	LOS A	8.6	60.0	0.18	0.21	0.22	56.9
North	: Limes	tone Avenue North												
8	T1	933	0.0	933	0.0	0.299	0.3	LOS A	0.8	5.3	0.03	0.03	0.03	59.3
9	R2	116	0.0	116	0.0	0.635	71.0	LOS F	3.6	25.2	1.00	0.78	1.08	27.5
Appro	bach	1049	0.0	1049	0.0	0.635	8.2	LOS A	3.6	25.2	0.14	0.11	0.15	48.4
West	: Anslie	Avenue												
10	L2	366	0.0	366	0.0	0.555	5.9	LOS A	0.9	6.0	0.05	0.57	0.05	54.0
12	R2	255	0.0	255	0.0	0.627	63.0	LOS E	7.3	51.2	0.99	0.80	1.01	19.8
Appro	bach	621	0.0	621	0.0	0.627	29.4	LOS C	7.3	51.2	0.44	0.66	0.44	37.3
All Ve	hicles	3335	0.0	3335	0.0	0.635	9.7	LOS A	8.6	60.0	0.22	0.26	0.24	50.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P31	North Stage 1	53	54.3	LOS E	0.2	0.2	0.95	0.95					
P32	North Stage 2	53	40.9	LOS E	0.1	0.1	0.83	0.83					
P41	West Stage 1	53	3.5	LOS A	0.0	0.0	0.24	0.24					
P42	West Stage 2	53	7.0	LOS A	0.1	0.1	0.34	0.34					
All Pe	destrians	211	26.4	LOS C			0.59	0.59					

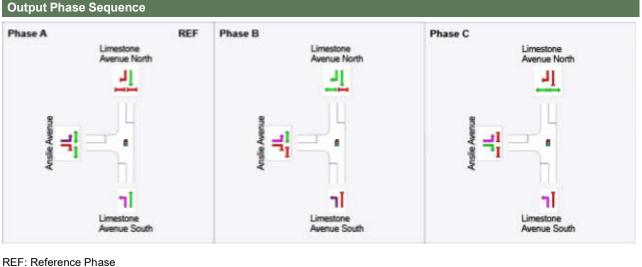
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

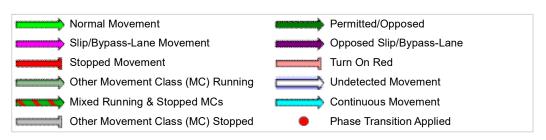
SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:26 AM Project: \AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

PHASING SUMMARY

Site: [Limestone Avenue_Ainslie Avenue PM]

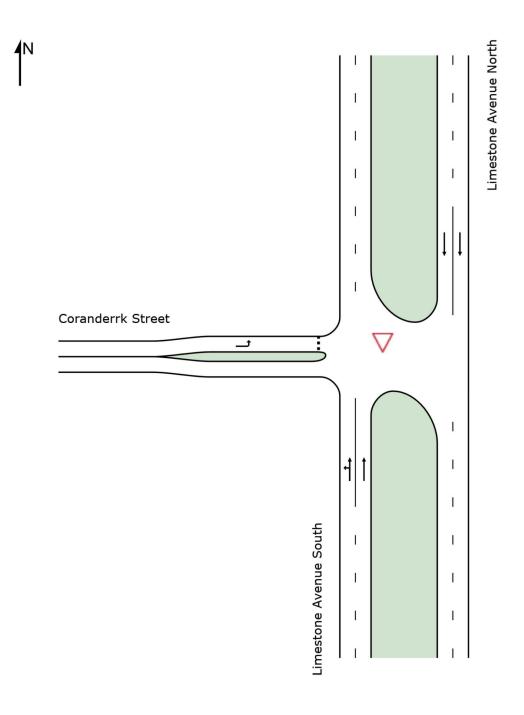

PM Proposed Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Variable Phasing Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	89	101
Green Time (sec)	83	6	13
Phase Time (sec)	89	12	19
Phase Split	74%	10%	16%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.


VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:26 AM Project: \AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

 ∇ Site: [Limestone Avenue_Coranderrk Street AM]

AM Proposed Site Category: (None) Giveway / Yield (Two-Way)

✓ Site: [Limestone Avenue_Coranderrk Street AM]

AM Proposed Site Category: (None) Giveway / Yield (Two-Way)

Move	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand Total	ΗV	Total	Flows HV %	Deg. Satn	Average Delay	Level of Service	Qu Vehicles	Back of eue Distance	Prop. Queued	Effective Stop Rate	Aver. / No. Cycles S	
South	n: Lime	veh/h stone Aver		veh/h uth	70	v/c	sec	_	veh	m	_	_	_	km/h
1	L2	31	0.0	31	0.0	0.242	5.6	LOS A	0.0	0.0	0.00	0.04	0.00	58.0
2	T1	911	0.0	911	0.0	0.242	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	59.6
Appro	bach	942	0.0	942	0.0	0.242	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.5
North	: Limes	stone Aver	nue No	rth										
8	T1	2265	0.0	2265	0.0	0.581	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Appro	bach	2265	0.0	2265	0.0	0.581	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8
West	: Corar	nderrk Stre	et											
10	L2	31	0.0	31	0.0	0.037	7.6	LOS A	0.1	0.9	0.44	0.65	0.44	48.2
Appro	bach	31	0.0	31	0.0	0.037	7.6	LOS A	0.1	0.9	0.44	0.65	0.44	48.2
All Ve	hicles	3238	0.0	3238	0.0	0.581	0.2	NA	0.1	0.9	0.00	0.01	0.00	59.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:22 AM

Project: \\AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

✓ Site: [Limestone Avenue_Coranderrk Street PM]

PM Proposed Site Category: (None) Giveway / Yield (Two-Way)

Move	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand I				Deg. Satn	Average Delay	Level of Service	95% B Que	eue	Prop. Queued	Effective Stop	Aver. A No.	e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles veh	Distance		Rate	Cycles S	speed km/h
South	: Lime	stone Aver	nue So	outh										
1	L2	42	0.0	42	0.0	0.454	5.6	LOS A	0.0	0.0	0.00	0.03	0.00	58.0
2	T1	1727	0.0	1727	0.0	0.454	0.1	LOS A	0.0	0.0	0.00	0.01	0.00	59.6
Appro	bach	1769	0.0	1769	0.0	0.454	0.2	NA	0.0	0.0	0.00	0.01	0.00	59.5
North	: Lime	stone Aven	ue No	rth										
8	T1	1082	0.0	1082	0.0	0.277	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1082	0.0	1082	0.0	0.277	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West	Corar	nderrk Stre	et											
10	L2	42	0.0	42	0.0	0.082	11.4	LOS A	0.3	2.1	0.64	0.85	0.64	43.9
Appro	bach	42	0.0	42	0.0	0.082	11.4	LOS A	0.3	2.1	0.64	0.85	0.64	43.9
All Ve	hicles	2893	0.0	2893	0.0	0.454	0.3	NA	0.3	2.1	0.01	0.02	0.01	59.4

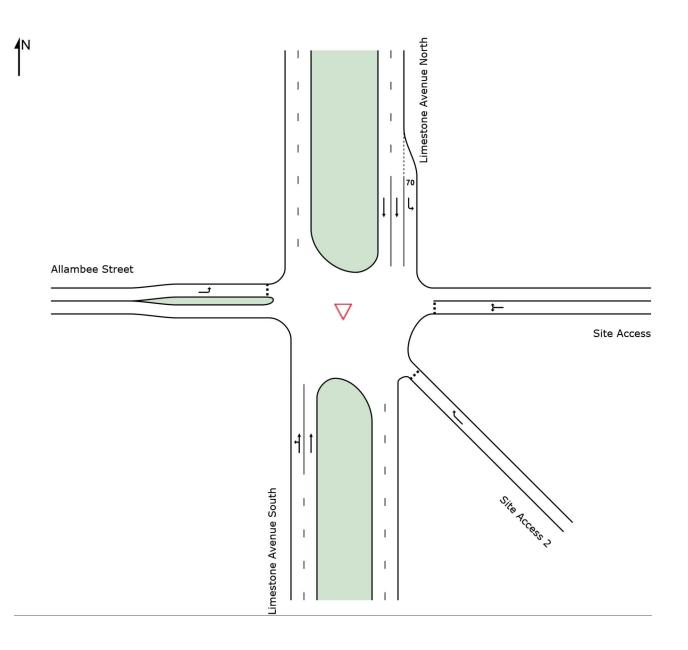
Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:26 AM

Project: \\AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

∑ Site: [Limestone Avenue_Allambee Street_Site Access AM]

AM Proposed Site Category: (None) Giveway / Yield (Two-Way)

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Created: Thursday, 19 December 2019 10:02:05 AM Project: \AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

V Site: [Limestone Avenue_Allambee Street_Site Access AM]

Image: Antiperson of the second se

AM Proposed Site Category: (None) Giveway / Yield (Two-Way)

Mov	ement	t Performa	ance	- Vehi	cles									
Mov	Turn	Demand F	lows	Arrival	Flows	Deg.	Average	Level of	95% Bac		Prop.	Effective	Aver. A	
ID		Total	ц\/	Total	ΗV	Satn	Delay	Service	Queu Vehicles Di		Queued	Stop Rate	No. Cycles S	e
		veh/h		veh/h	%	v/c	sec		venicies Di	m		Tale	Cycles S	km/h
South	n: Lime	stone Aven	ue Sc	outh										
1	L2	20	0.0	20	0.0	0.259	5.6	LOS A	0.0	0.0	0.00	0.02	0.00	58.1
2	T1	988	0.0	988	0.0	0.259	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.7
Appro	oach	1008	0.0	1008	0.0	0.259	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.7
South	nEast:	Site Access	5 2											
23a	R1	20	0.0	20	0.0	0.043	11.1	LOS A	0.2	1.1	0.59	0.70	0.59	44.1
Appro	oach	20	0.0	20	0.0	0.043	11.1	LOS A	0.2	1.1	0.59	0.70	0.59	44.1
East:	East: Site Access													
4	L2	99	0.0	99	0.0	0.323	17.3	LOS B	1.5	10.3	0.84	0.96	0.94	35.8
6	R2	20	0.0	20	0.0	0.323	38.9	LOS C	1.5	10.3	0.84	0.96	0.94	35.8
Appro	oach	119	0.0	119	0.0	0.323	21.0	LOS B	1.5	10.3	0.84	0.96	0.94	35.8
North	: Lime	stone Aven	ue No	rth										
7	L2	30	0.0	30	0.0	0.016	5.5	LOS A	0.0	0.0	0.00	0.58	0.00	53.6
8	T1	2225	0.0	2225	0.0	0.571	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Appro	oach	2255	0.0	2255	0.0	0.571	0.2	NA	0.0	0.0	0.00	0.01	0.00	59.6
West	: Allam	bee Street												
10	L2	20	0.0	20	0.0	0.013	7.3	LOS A	0.1	0.6	0.29	0.54	0.29	48.6
Appro	oach	20	0.0	20	0.0	0.013	7.3	LOS A	0.1	0.6	0.29	0.54	0.29	48.6
All Ve	ehicles	3422	0.0	3422	0.0	0.571	1.0	NA	1.5	10.3	0.03	0.05	0.04	58.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:22 AM Project: \AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

✓ Site: [Limestone Avenue_Allambee Street_Site Access PM]

∲∲ Network: 1 [Future PM]

PM Proposed Site Category: (None) Giveway / Yield (Two-Way)

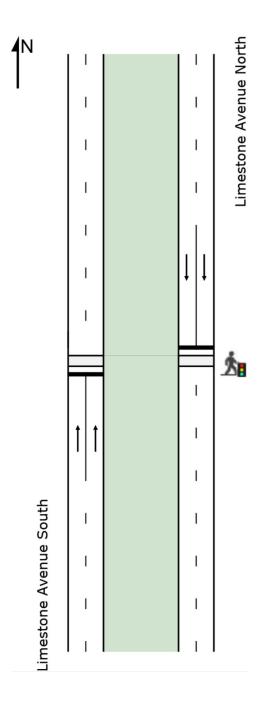
Mov	Novement Performance - Vehicles Nov Turn Demand Flows Arrival Flows Deg. Average Level of 95% Back of Prop. Effective Aver. Averag													
Mov	Turn	Demand F	lows	Arrival	Flows						Prop.			verag
ID		Total		Total	ΗV	Satn	Delay	Service	Queue Vehicles Dis		Queued	Stop	No. Cycles S	e
		veh/h		veh/h	пv %	v/c	sec		venicies Di	m		Rate	Cycles 3	km/h
South	n: Lime	stone Aven												
1	L2	31	0.0	31	0.0	0.456	5.6	LOS A	0.0	0.0	0.00	0.02	0.00	58.1
2	T1	1746	0.0	1746	0.0	0.456	0.1	LOS A	0.0	0.0	0.00	0.01	0.00	59.7
Appro	oach	1777	0.0	1777	0.0	0.456	0.2	NA	0.0	0.0	0.00	0.01	0.00	59.6
South	nEast:	Site Access	5 2											
23a	R1	6	0.0	6	0.0	0.032	25.0	LOS B	0.1	0.7	0.84	0.92	0.84	33.2
Appro	bach	6	0.0	6	0.0	0.032	25.0	LOS B	0.1	0.7	0.84	0.92	0.84	33.2
East:	Site A	ccess												
4	L2	22	0.0	22	0.0	0.036	8.7	LOS A	0.1	1.0	0.56	0.67	0.56	45.4
6	R2	6	0.0	6	0.0	0.036	14.4	LOS A	0.1	1.0	0.56	0.67	0.56	45.4
Appro	bach	28	0.0	28	0.0	0.036	9.9	LOS A	0.1	1.0	0.56	0.67	0.56	45.4
North	: Lime	stone Aven	ue No	rth										
7	L2	117	0.0	117	0.0	0.063	5.5	LOS A	0.0	0.0	0.00	0.58	0.00	53.6
8	T1	1188	0.0	1188	0.0	0.305	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	bach	1305	0.0	1305	0.0	0.305	0.5	NA	0.0	0.0	0.00	0.05	0.00	58.8
West	: Allam	bee Street												
10	L2	31	0.0	31	0.0	0.029	9.8	LOS A	0.2	1.2	0.50	0.59	0.50	45.6
Appro	bach	31	0.0	31	0.0	0.029	9.8	LOS A	0.2	1.2	0.50	0.59	0.50	45.6
All Ve	ehicles	3147	0.0	3147	0.0	0.456	0.5	NA	0.2	1.2	0.01	0.04	0.01	58.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.


Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:26 AM Project: \AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

Site: [Limestone Avenue_Pedestrian Crossing AM]

AM Proposed Site Category: (None) Pedestrian Crossing (Signals) - Fixed Time Isolated

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Created: Thursday, 19 December 2019 10:02:10 AM Project: \\AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

Site: [Limestone Avenue_Pedestrian Crossing AM]

AM Proposed Site Category: (None)

Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 30 seconds (Site Practical Cycle Time)

Mov	ement	Performa	ance -	Vehio	cles									
Mov ID			lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Ba Quei			Effective Stop	Aver. Averag No. e	
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles D veh	istance) m		Rate	Cycles S	Speed km/h
South	South: Limestone Avenue South													
2	T1	942	0.0	942	0.0	0.345	2.0	LOS A	2.8	19.6	0.42	0.37	0.42	56.4
Appro	oach	942	0.0	942	0.0	0.345	2.0	LOS A	2.8	19.6	0.42	0.37	0.42	56.4
North	: Limes	stone Aven	ue Noi	rth										
8	T1	2265	0.0	2265	0.0	0.830	8.9	LOS A	16.9	118.4	0.77	0.87	1.02	46.5
Appro	oach	2265	0.0	2265	0.0	0.830	8.9	LOS A	16.9	118.4	0.77	0.87	1.02	46.5
All Ve	ehicles	3207	0.0	3207	0.0	0.830	6.9	LOS A	16.9	118.4	0.67	0.72	0.85	49.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P11	South Stage 1	21	9.6	LOS A	0.0	0.0	0.80	0.80				
P12	South Stage 2	21	9.6	LOS A	0.0	0.0	0.80	0.80				
All Pe	destrians	42	9.6	LOS A			0.80	0.80				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

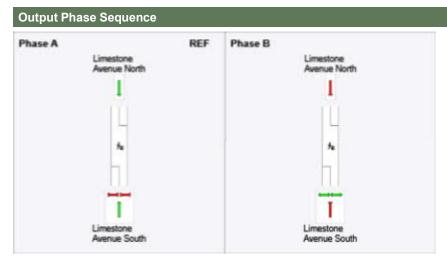
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:22 AM Project: \\AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

PHASING SUMMARY

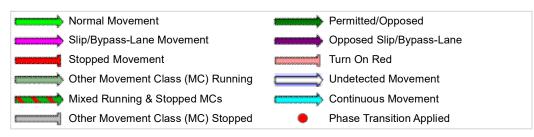
Site: [Limestone Avenue_Pedestrian Crossing AM]

🛛 🕸 🕸 🕸 🕸 🕸 🕸 🕸 🕸 🕸


AM Proposed Site Category: (None) Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 30 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Two-Phase Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary


Phase	Α	В
Phase Change Time (sec)	0	27
Green Time (sec)	21	2
Phase Time (sec)	22	8
Phase Split	73%	27%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase

VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:22 AM Project: \AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

Site: [Limestone Avenue_Pedestrian Crossing PM]

PM Proposed Site Category: (None)

Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 20 seconds (Site Practical Cycle Time)

Mov	ement	Performa	ance - Vel	nicles									
Mov ID	Turn Demand Flows Arrival Flows		Deg. Average Level Satn Delay Servio		Level of Service	95% Ba Queu		Prop. Effective Queued Stop		Aver. Averag No. e			
		Total	HV Tota					Vehicles D			Rate	Cycles S	
South	veh/h % veh/h % v/c sec veh m k South: Limestone Avenue South												km/h
2	T1	1769	0.0 1769	0.0	0.756	5.6	LOS A	8.3	57.9	0.78	0.81	1.01	50.8
Appro	bach	1769	0.0 1769	0.0	0.756	5.6	LOS A	8.3	57.9	0.78	0.81	1.01	50.8
North	: Lime	stone Aven	ue North										
8	T1	1082	0.0 1082	2 0.0	0.462	2.5	LOS A	3.1	21.6	0.59	0.51	0.59	55.2
Appro	bach	1082	0.0 1082	2 0.0	0.462	2.5	LOS A	3.1	21.6	0.59	0.51	0.59	55.2
All Ve	ehicles	2851	0.0 285	1 0.0	0.756	4.4	LOS A	8.3	57.9	0.71	0.70	0.85	52.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P11	South Stage 1	21	4.9	LOS A	0.0	0.0	0.70	0.70					
P12	South Stage 2	21	4.9	LOS A	0.0	0.0	0.70	0.70					
All Pe	destrians	42	4.9	LOS A			0.70	0.70					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

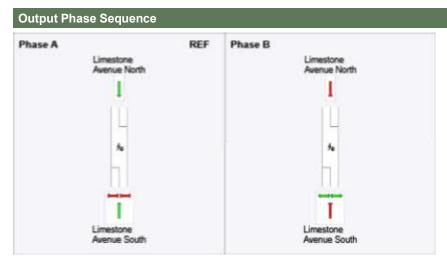
Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:26 AM Project: \\AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

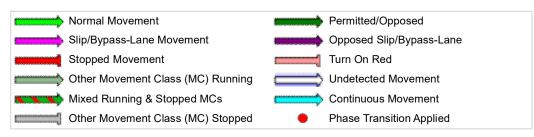
PHASING SUMMARY

Site: [Limestone Avenue_Pedestrian Crossing PM]

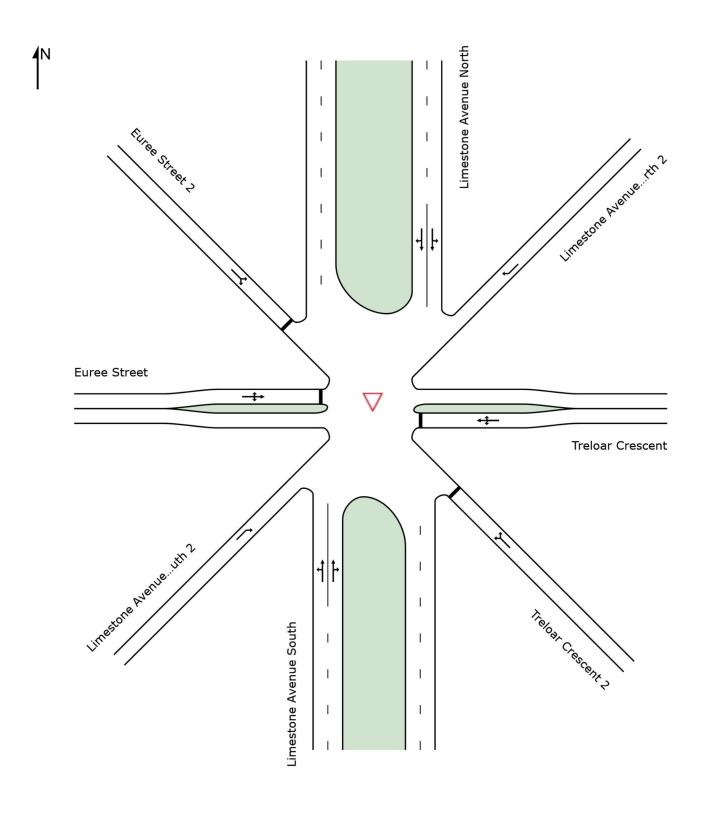

PM Proposed Site Category: (None) Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 20 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Green Split Priority has been specified Phase Sequence: Two-Phase Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Phase Timing Summary	/
----------------------	---


Phase	Α	В
Phase Change Time (sec)	0	18
Green Time (sec)	12	1
Phase Time (sec)	13	7
Phase Split	65%	35%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.



REF: Reference Phase

VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 19 December 2019 9:50:26 AM Project: \AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Created: Thursday, 19 December 2019 10:02:12 AM Project: \AUCBR1FP001\Projects\CBR\60528939\400_TECH\431_Tech Work Area\Traffic\2019.12.18 - S38_Campbell_Proposed.sip8

✓ Site: [Limestone Avenue_Euree Street_Treloar Crescent

Network: 1 [Future AM]

AM]

AM Proposed Site Category: (None) Giveway / Yield (Two-Way)

Mov	ement	Perform	ance	- Vehic	les									
	Turn	Demand I	Flows	Arrival	Flows		Average		95% Bac			Effective	Aver. A	0
ID		Total	ΗV	Total	ΗV	Satn	Delay	Service	Queu Vehicles Di		Queued	Stop Rate	No. Cycles S	e Speed
		veh/h		veh/h	%	v/c	sec		veh	m			, 	km/h
		stone Aver			0.0	0.004		1.00.4	0.0	0.0	0.00	0.04	0.00	50.0
1	L2	6	0.0	6	0.0	0.231	5.6	LOSA	0.0	0.0	0.00	0.01	0.00	58.3
2	T1	870	0.0	870	0.0	0.231	0.0	LOSA	0.0	0.0	0.00	0.02	0.00	59.6
3	R2	24 900	0.0	24 900	0.0	0.231	5.5	LOS A	0.0	0.0	0.00	0.03	0.00	57.8
Appro	oach	900	0.0	900	0.0	0.231	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.5
South		Freloar Cre		2										
21a	L1	3	0.0	3	0.0	0.096	11.3	LOS A	0.3	2.3	0.60	1.01	0.60	47.9
23a	R1	35	0.0	35	0.0	0.096	16.8	LOS B	0.3	2.3	0.60	1.01	0.60	41.0
Appro	oach	38	0.0	38	0.0	0.096	16.4	LOS B	0.3	2.3	0.60	1.01	0.60	41.9
East:	Treloa	r Crescent												
4	L2	6	0.0	6	0.0	0.575	36.9	LOS C	1.8	12.6	0.96	1.05	1.16	26.3
5	T1	3	0.0	3	0.0	0.575	74.0	LOS F	1.8	12.6	0.96	1.05	1.16	26.3
6	R2	35	0.0	35	0.0	0.575	85.8	LOS F	1.8	12.6	0.96	1.05	1.16	17.3
Appro	oach	44	0.0	44	0.0	0.575	78.3	LOS F	1.8	12.6	0.96	1.05	1.16	19.5
North	nEast: L	imestone /	Avenu	e North	2									
26a	R1	52	0.0	52	0.0	0.047	6.4	LOS A	0.2	1.3	0.40	0.56	0.40	53.8
Appro	oach	52	0.0	52	0.0	0.047	6.4	NA	0.2	1.3	0.40	0.56	0.40	53.8
North	n: Limes	stone Aven	ue No	rth										
7	L2	129	0.0	129	0.0	0.574	5.6	LOS A	0.0	0.0	0.00	0.07	0.00	57.6
8	T1	2047	0.0	2047	0.0	0.574	0.1	LOS A	0.0	0.0	0.00	0.05	0.00	59.4
9	R2	52	0.0	52	0.0	0.574	5.6	LOS A	0.0	0.0	0.00	0.03	0.00	57.7
Appro	oach	2228	0.0	2228	0.0	0.574	0.6	NA	0.0	0.0	0.00	0.05	0.00	59.2
North	West:	Euree Stre	et 2											
27a	L1	7	0.0	7	0.0	0.038	22.6	LOS B	0.1	0.8	0.86	0.99	0.86	42.0
29a	R1	1	0.0	1	0.0	0.038	65.2	LOS E	0.1	0.8	0.86	0.99	0.86	42.2
Appro	oach	8	0.0	8	0.0	0.038	27.9	LOS B	0.1	0.8	0.86	0.99	0.86	42.0
West	: Euree	Street												
10	L2	7	0.0	7	0.0	0.025	10.5	LOS A	0.1	0.7	0.52	0.86	0.52	43.3
11	T1	7	0.0	7	0.0	0.025	15.2	LOS B	0.1	0.7	0.52	0.86	0.52	49.2
12	R2	1	0.0	1	0.0	0.025	15.5	LOS B	0.1	0.7	0.52	0.86	0.52	48.8
Appro		15	0.0	15	0.0	0.025	13.0	LOS A	0.1	0.7	0.52	0.86	0.52	47.2
		Limestone												
32a	R1	24	0.0	24	0.0	0.063	15.1	LOS B	0.2	1.5	0.80	0.89	0.80	47.8
Appro	oach	24	0.0	24	0.0	0.063	15.1	NA	0.2	1.5	0.80	0.89	0.80	47.8
All Ve	ehicles	3309	0.0	3309	0.0	0.575	2.0	NA	1.8	12.6	0.04	0.09	0.04	57.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

✓ Site: [Limestone Avenue_Euree Street_Treloar Crescent

♦♦ Network: 1 [Future PM]

PM]

PM Proposed Site Category: (None) Giveway / Yield (Two-Way)

Movement Performance - Vehicles														
	Turn	Demand I	Flows	Arrival	Flows		Average		95% Bac		Prop.	Effective	Aver. A	Averag
ID		Total	ΗV	Total	ΗV	Satn	Delay	Service	Queu Vehicles Di		Queued	Stop Rate	No. Cycles S	e Speed
0 11		veh/h		veh/h	%	v/c	sec		veh	m				km/h
		stone Aver			0.0	0.400	5.0	1.00.4	0.0	0.0	0.00	0.04	0.00	50.0
1	L2	18	0.0	18	0.0	0.420	5.6	LOSA	0.0	0.0	0.00	0.01	0.00	58.2
2	T1	1616		1616	0.0	0.420	0.1	LOSA	0.0	0.0	0.00	0.01	0.00	59.7
3	R2	4	0.0	4	0.0	0.420	5.6	LOS A	0.0	0.0	0.00	0.00	0.00	58.0
Appro	bach	1638	0.0	1638	0.0	0.420	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.7
South	nEast: 1	Freloar Cre	escent	2										
21a	L1	3	0.0	3	0.0	0.502	21.8	LOS B	1.8	12.5	0.91	1.06	1.11	36.1
23a	R1	72	0.0	72	0.0	0.502	43.2	LOS D	1.8	12.5	0.91	1.06	1.11	26.5
Appro	bach	75	0.0	75	0.0	0.502	42.4	LOS C	1.8	12.5	0.91	1.06	1.11	27.0
East:	Treloa	r Crescent												
4	L2	65	0.0	65	0.0	0.290	11.9	LOS A	1.2	8.5	0.65	0.97	0.69	47.4
5	T1	3	0.0	3	0.0	0.290	18.4	LOS B	1.2	8.5	0.65	0.97	0.69	47.6
6	R2	72	0.0	72	0.0	0.290	19.2	LOS B	1.2	8.5	0.65	0.97	0.69	40.9
Appro	bach	140	0.0	140	0.0	0.290	15.8	LOS B	1.2	8.5	0.65	0.97	0.69	44.9
North	East: L	imestone /	Avenu	e North	2									
26a	R1	12	0.0	12	0.0	0.019	9.6	LOS A	0.1	0.5	0.65	0.69	0.65	51.4
Appro	bach	12	0.0	12	0.0	0.019	9.6	NA	0.1	0.5	0.65	0.69	0.65	51.4
North	: Limes	stone Aven	ue No	rth										
7	L2	72	0.0	72	0.0	0.271	5.6	LOS A	0.0	0.0	0.00	0.08	0.00	57.6
8	T1	968	0.0	968	0.0	0.271	0.0	LOS A	0.0	0.0	0.00	0.05	0.00	59.5
9	R2	12	0.0	12	0.0	0.271	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	57.9
Appro	bach	1052	0.0	1052	0.0	0.271	0.5	NA	0.0	0.0	0.00	0.05	0.00	59.4
North	West: I	Euree Stre	et 2											
27a	L1	5	0.0	5	0.0	0.014	11.7	LOS A	0.1	0.4	0.56	0.91	0.56	49.4
29a	R1	3	0.0	3	0.0	0.014	17.7	LOS B	0.1	0.4	0.56	0.91	0.56	49.6
Appro	bach	8	0.0	8	0.0	0.014	14.0	LOS A	0.1	0.4	0.56	0.91	0.56	49.5
West	Euree	Street												
10	L2	40	0.0	40	0.0	0.119	15.2	LOS B	0.4	3.0	0.75	0.98	0.75	39.1
11	T1	5	0.0	5	0.0	0.119	30.8	LOS C	0.4	3.0	0.75	0.98	0.75	46.4
12	R2	3	0.0	3	0.0	0.119	34.8	LOS C	0.4	3.0	0.75	0.98	0.75	46.0
Appro	bach	48	0.0	48	0.0	0.119	18.1	LOS B	0.4	3.0	0.75	0.98	0.75	40.9
South	West:	Limestone	Avenu	ue Sout	th 2									
32a	R1	4	0.0	4	0.0	0.004	6.8	LOS A	0.0	0.1	0.45	0.52	0.45	53.6
Appro	bach	4	0.0	4	0.0	0.004	6.8	NA	0.0	0.1	0.45	0.52	0.45	53.6
All Ve	hicles	2977	0.0	2977	0.0	0.502	2.4	NA	1.8	12.5	0.07	0.12	0.08	56.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.