Academy Close
CAMPBELL
ACT 2612

PREPARED FOR:
Arcadis

PREPARED BY:
Lancaster and Dickenson Consulting Pty Ltd
ABN 74 169 785 915
Unit 1, 6 Dacre St
Mitchell ACT 2911
T: (02) 6241 2779
E: admin@landd.com.au
www.landd.com.au

Document Control

<table>
<thead>
<tr>
<th>File Reference</th>
<th>Revision</th>
<th>Date</th>
<th>Prepared by</th>
<th>Authorised by</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1014AA_Intrusive_HAZMAT_Academy Close, Campbell_20170320</td>
<td>0</td>
<td>20/03/2017</td>
<td>K. Lancaster</td>
<td>E. Dickenson</td>
</tr>
<tr>
<td>LD1014AA_Intrusive_HAZMAT_Academy Close, Campbell_20170328</td>
<td>1</td>
<td>28/03/2017</td>
<td>J. Smith</td>
<td>K. Lancaster</td>
</tr>
</tbody>
</table>
Table of Contents

Glossary ... 1

1 Introduction .. 2
 1.1 Purpose ... 2
 1.2 Objectives .. 2

2 Legislation .. 2

3 Assessment Methodology .. 3
 3.1 Asbestos Survey .. 3
 3.1.1 Assessing Risk .. 3
 3.1.2 Determining Suitable Control Measures ... 4
 3.2 SMF .. 4
 3.3 Fuel Storage Tanks .. 4
 3.4 PCBs ... 4
 3.5 Lead Containing Paint ... 5
 3.6 ODS .. 5

4 Survey Details .. 6
 4.1 Site Description ... 6
 4.2 Site Location .. 6

5 Survey Findings .. 7
 5.1 Asbestos ... 7
 5.2 Summary of Identified SMF ... 13
 5.3 Summary of Identified PCB and Non-PCB Containing Capacitors 14
 5.4 Summary of Identified Lead Containing Paint .. 15
 5.5 Summary of Identified Ozone Depleting Substances (ODS) 16
 5.6 Summary of Identified Fuel Tank Storage ... 16

6 Limitations .. 17
 6.1 Intrusive Hazardous Materials Survey ... 17
 6.2 Report ... 17

7 Conclusions & Recommendations .. 18
Appendices

APPENDIX A – Asbestos Sample Photographs
APPENDIX B – Non-Asbestos Sample Photographs
APPENDIX C – SMF Photographs
APPENDIX D – PCB Photographs
APPENDIX E – Lead Paint Photographs
APPENDIX F – Certificates of Analysis – Asbestos
APPENDIX G – Certificates of Analysis – Lead Paint
Glossary

ACM
Asbestos Containing Material. Any material, object, product or debris that contains asbestos.

Amosite
Grey or brown asbestos.

ARCP
Asbestos Removal Control Plan. A document detailing the control measures for undertaking particular asbestos removal works.

Chrysotile
White asbestos.

Crocidolite
Blue asbestos.

Friable asbestos
Friable asbestos material can be crumbled or reduced to a dust by hand pressure when dry. It can represent a significant exposure hazard as a consequence of minor disturbance. Pipe lagging, loose-fill asbestos, millboard and severely damaged non-friable asbestos are examples of friable asbestos.

Non-friable asbestos
Non-friable asbestos is material that contains asbestos firmly bound into a matrix. It may consist of cement or various resins/binders and cannot be reduced to a dust by hand pressure. As such it does not present an exposure hazard unless cut, abraded, sanded or otherwise disturbed. Therefore, the exposure risk from non-friable ACM is negligible during normal building occupation.

ODS
Ozone Depleting Substances

PCBs
Polychlorinated Biphenyls

Safe Work Method Statement (SMWS)
Details the methodology and requirement for carrying out particular high risk construction work, including asbestos works.

SMF
Synthetic Mineral Fibres

WHS
Work Health and Safety
1 Introduction

The ACT Work Health and Safety Regulation 2011 states that a person or persons with management or control of the workplace must ensure that an asbestos register and an asbestos management plan be developed for the workplace. These documents are essential to aiding those with management or control of the workplace (management) to effectively manage ACM during normal building use. Management should also ensure that other hazardous materials on site are effectively managed.

1.1 Purpose

This Intrusive Hazardous Materials Survey Report includes a register of all ACM, SMF, PCBs, lead containing paint, ODS and fuel storage tanks identified during the intrusive survey of 8, 9, 14, 22 and 27 Academy Close, Campbell completed on 7 March 2017. The register includes the location, condition and extent of these materials.

This document should be made available to all persons involved in the planned demolition of the site as well as any personnel which have a responsibility to ensure the effective management of any hazardous materials on site.

1.2 Objectives

This document is created to provide persons with control of the site during its planned refurbishment and/or demolition with a system by which they can ensure that all practicable steps are taken to minimise as far as practicable the risk of exposure to hazardous materials to those visiting, occupying or working at the premises located at Academy Close, Campbell. Its objectives are to:

- Detail all identified hazardous materials on site including locations, condition and extent
- Advise persons with control of the site on the potential risk associated with identified hazardous materials and recommended control actions
- Describe the process for advising to those visiting, occupying or working on site of the hazardous materials which may affect them

2 Legislation

Whilst the focus of this document is to assist management to fulfil its duties with regard to the health and safety, the document has also been written to ensure that the legislative requirements associated with asbestos management can be met. This document has been written in accordance with the requirements outlined in:

- ACT Work Health and Safety (WHS) Act 2011
- ACT WHS Regulation 2011
- ACT WHS (How to Manage and Control Asbestos in the Workplace Code of Practice) approval 2014
- ACT WHS (How to Safely Remove Asbestos in the Workplace Code of Practice) approval 2014
3 Assessment Methodology

3.1 Asbestos Survey

Asbestos management surveys are conducted to identify, as far as practicable, all accessible ACM. In accordance with L & D procedures, the assessor(s) conducted a systematic inspection of the site. Following visual assessment of the site, bulk samples are taken of suspected ACM for analysis with the purpose of confirming whether the material contains asbestos. The site sampling regime is dependent on such things as the nature of the building and the building history. Sufficient samples were taken at each location and representative bulk sampling procedures are adopted where there are repetitive materials. Materials similar to those positively identified to contain asbestos are also presumed to contain asbestos and should be treated as such. Samples are taken using fibre suppression techniques and sample locations are sealed following sampling to prevent any subsequent fibre release.

Samples collected during the assessment for asbestos analysis are delivered to a National Association of Testing Authorities (NATA) accredited laboratory with a chain of custody form. Samples are analysed using polarised light microscopy and dispersion staining techniques.

Risk Assessment

Identified ACM is risk assessed based on the following criteria:

- the condition of the material at the time of the assessment;
- the accessibility of the material;
- the likelihood of the material being disturbed resulting in a release of asbestos fibre.

Each ACM is categorised into one of four (4) risk categories:

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low Risk</td>
<td>Material is very unlikely to pose an exposure risk in its current condition during standard building use.</td>
</tr>
<tr>
<td>Low Risk</td>
<td>Material is unlikely to pose an exposure risk in its current condition during standard building use.</td>
</tr>
<tr>
<td>Medium Risk</td>
<td>Material is likely to pose an exposure risk in its current condition during standard building use.</td>
</tr>
<tr>
<td>High Risk</td>
<td>Material poses an exposure risk in its current condition.</td>
</tr>
</tbody>
</table>

Risk assessments are relevant to the specific time of the assessment and are made by the assessor using their professional judgement.

3.1.1 Assessing Risk

There are a number of factors that are considered during an asbestos material risk assessment:

- **Type of product or binding matrix:** Asbestos fibres were used in the manufacture of many different building products. These materials typically utilised an agent to bind the asbestos fibres within the matrix of the building material. Fibres which are bound within a matrix cannot be inhaled and therefore do not pose an exposure risk until the fibres are released from the matrix.
• **Condition of ACM:** The condition of an ACM is important for assessing risk. An example of this would be asbestos cement sheet in poor condition. Although the asbestos fibres were manufactured to be bound within the cement matrix, damage has resulted in the release of airborne fibre as well as making further disturbance of the material more likely to generate airborne asbestos fibres.

• **Location:** The location of an ACM is typically a great indicator on the likelihood that an ACM will become disturbed. The more accessible and ACM or if an ACM is present in an “Active” work area, the more likely it is that an ACM will become disturbed. Direct disturbance of ACM can result in an asbestos exposure and also increases the likelihood of the further fibre release if disturbed again.

Risk assessments are relevant to the specific time of the assessment and are made by the licenced asbestos assessor using their professional judgement.

Where a risk assessment indicates there is an elevated risk of exposure to airborne asbestos fibre, suitable control measures must be implemented to eliminate or reduce the risk as far as practicable.

3.1.2 **Determining Suitable Control Measures**

Recommended control measures are made by the LAA based on the results of the risk assessment. These recommendations are presented within the site asbestos register (Section 6.1). However, should the condition of identified ACM change or should site conditions increase the likelihood that ACM may be disturbed, this risk assessment may need to be revised.

The ACT WHS (How to Manage and Control Asbestos in the Workplace Code of Practice) Approval 2014 requires that when choosing the most appropriate control measure for managing ACM or asbestos, the hierarchy of controls must be considered. It is important that Management refers to the hierarchy of controls (Section 11) to make determinations on whether further/alternative action is required.

3.2 **SMF**

The survey for SMF is carried out in general accordance with the guidelines documented in the Code of Practice for the Safe Use of Synthetic Mineral Fibres [NOHSC: 2006 (1990)]. This includes documenting any materials visually assessed on site as being consistent with SMF.

3.3 **Fuel Storage Tanks**

A visual inspection of the site was undertaken to assess for signs of infrastructure of both above ground and below ground fuel storage tanks

3.4 **PCBs**

Detailed information found on capacitors of light fittings and other electrical equipment was recorded for cross-referencing with the Australian and New Zealand Environmental and Conservation Council (ANZECC) Identification of PCB containing capacitors information booklet (1997).
Due to the inherent hazard in accessing electrical components, such as live electricity, working at heights and confined spaces, some components may not be safely accessed. In these instances, comment is made on the likelihood of PCB containing materials based upon age and appearance.

3.5 Lead Containing Paint

All surface paints on site were assessed for their likelihood to contain lead. The assessment concentrated on areas where lead based paints may have been used (e.g. Building exterior, window frames, skirting boards etc.). Determination of which areas are most likely to have lead based paint is made by the assessor based on factors such as the age and construction of the building(s). The sampling program included taking three (3) sub samples for each paint identified to ensure representative analysis. Samples size is typically 25mm². Painted surfaces samples were delivered to a NATA accredited facility for lead analysis.

3.6 ODS

An inspection of air conditioning and refrigeration units was undertaken to assess for ODS.
4 Survey Details

On 7 March 2017, Lancaster & Dickenson Consulting completed an intrusive hazardous materials survey of Academy Close, Campbell. This document details the findings of this survey. The lead surveyor was ACT licensed Asbestos Assessor Kyle Lancaster (Licence No. AA00004).

4.1 Site Description

<table>
<thead>
<tr>
<th>Site Address:</th>
<th>Academy Close, Campbell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block and Sections Numbers:</td>
<td>Block 3 Section 65, Campbell</td>
</tr>
<tr>
<td>No. of Buildings:</td>
<td>22 buildings of 5 varieties (5 buildings surveyed)</td>
</tr>
<tr>
<td>Date of Construction:</td>
<td>Late 80s, early 90s</td>
</tr>
<tr>
<td>Building Construction:</td>
<td>Ceramic roof tile, brick external walls, concrete floor slab/floorboards, Gyprock/fibre cement walls, gyprock ceilings, carpet</td>
</tr>
</tbody>
</table>

4.2 Site Location

The location of the site is shown blow in Figure 1.

Figure 1: Site location
5 Survey Findings

<table>
<thead>
<tr>
<th>Lead Surveyor</th>
<th>Kyle Lancaster - LAA (AA00004)</th>
<th>Survey Completion Date</th>
<th>7 March 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Contact</td>
<td>-</td>
<td>Site Address</td>
<td>Academy Close, Campbell</td>
</tr>
</tbody>
</table>

This table presented in the following sections detail the findings of the intrusive hazardous materials survey of 8, 9, 14, 22 and 27 Academy Close, Campbell.

5.1 Asbestos

Asbestos items identified during the survey of Academy Close, Campbell as well as any materials which were assumed to contain asbestos or assumed to be consistent with a sampled asbestos material are presented overleaf in Table 1a. Table 1b includes information on any samples taken during the survey which were found to contain no asbestos.

These tables only include details for material assessed for the survey buildings only. Any suspect ACM not detailed within these tables should be sampled and analysed to confirm whether or not the material contain asbestos.

Asbestos sample analysis was undertaken at L&D’s, National Association of Testing Authorities (NATA) accredited laboratory. The samples were analysed by Polarised Light Microscopy using dispersion staining techniques. The results of the asbestos sample analysis can be found on the Certificates of Analysis (Appendix E to this report).
Table 1a – Asbestos Materials Register

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>FLOOR</th>
<th>LOCATION DESCRIPTION</th>
<th>MATERIAL DESCRIPTION</th>
<th>PHOTO NO</th>
<th>SAMPLE NO.</th>
<th>ASBESTOS CONTENT</th>
<th>ASBESTOS TYPE</th>
<th>MATERIAL CONDITION</th>
<th>LIKELIHOOD OF DISTURBANCE</th>
<th>RISK RATING</th>
<th>RECOMMENDATIONS & COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1014AA-1</td>
<td>G</td>
<td>External panel to fence adjacent 9 Academy Close.</td>
<td>Fibre cement</td>
<td>A1</td>
<td>LD-JS0505</td>
<td>Chrysotile asbestos</td>
<td>Non-friable</td>
<td>Good</td>
<td>Low</td>
<td>Very low</td>
<td>Remove panel prior to the commencement of works which may disturb the material</td>
</tr>
</tbody>
</table>
Table 1b: Non-asbestos Sample Register

<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>BUILDING</th>
<th>LOCATION DESCRIPTION</th>
<th>MATERIAL DESCRIPTION</th>
<th>PHOTO NO</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-JS0492</td>
<td>14</td>
<td>External eave lining</td>
<td>Fibre cement</td>
<td>NA1</td>
<td></td>
</tr>
<tr>
<td>LD-JS0493</td>
<td>14</td>
<td>External house cladding</td>
<td>Fibre cement</td>
<td>NA2</td>
<td></td>
</tr>
<tr>
<td>LD-JS0494</td>
<td>14</td>
<td>Bathroom wall sheet</td>
<td>Fibre cement</td>
<td>NA3</td>
<td></td>
</tr>
<tr>
<td>LD-JS0495</td>
<td>14</td>
<td>Bathroom floor sheet</td>
<td>Fibre cement</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LD-JS0496</td>
<td>8</td>
<td>External eave lining</td>
<td>Fibre cement</td>
<td>NA1</td>
<td></td>
</tr>
<tr>
<td>LD-JS0497</td>
<td>8</td>
<td>External house cladding</td>
<td>Fibre cement</td>
<td>NA2</td>
<td></td>
</tr>
<tr>
<td>LD-JS0498</td>
<td>8</td>
<td>Bathroom wall sheet</td>
<td>Fibre cement</td>
<td>NA3</td>
<td></td>
</tr>
<tr>
<td>LD-JS0499</td>
<td>9</td>
<td>Laundry wall sheet</td>
<td>Fibre cement</td>
<td>NA4</td>
<td></td>
</tr>
<tr>
<td>LD-JS0500</td>
<td>9</td>
<td>Bathroom wall sheet</td>
<td>Fibre cement</td>
<td>NA3</td>
<td></td>
</tr>
</tbody>
</table>

Refer to ensuite wall sheet

LD-JS0499 - Laundry wall sheet
LD-JS0500 - Bathroom wall sheet
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>BUILDING</th>
<th>LOCATION DESCRIPTION</th>
<th>MATERIAL DESCRIPTION</th>
<th>PHOTO NO.</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-JS0501</td>
<td>9</td>
<td>Bathroom floor sheet</td>
<td>Fibre cement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-JS0502</td>
<td>9</td>
<td>External eave lining</td>
<td>Fibre cement</td>
<td>NA1</td>
<td>Refer to the verge tile bedding strips to house and garage</td>
</tr>
<tr>
<td>LD-JS0503</td>
<td>9</td>
<td>External house cladding</td>
<td>Fibre cement</td>
<td>NA2</td>
<td></td>
</tr>
<tr>
<td>LD-JS0504</td>
<td>9</td>
<td>Storage room – wall sheet</td>
<td>Fibre cement</td>
<td>NA5</td>
<td></td>
</tr>
<tr>
<td>LD-KL1661</td>
<td>22</td>
<td>Bathroom wall sheet</td>
<td>Fibre cement</td>
<td>NA3</td>
<td>Refer to ensuite wall sheet</td>
</tr>
<tr>
<td>LD-KL1662</td>
<td>22</td>
<td>Laundry wall sheet</td>
<td>Fibre cement</td>
<td>NA4</td>
<td></td>
</tr>
<tr>
<td>LD-KL1663</td>
<td>22</td>
<td>External house cladding</td>
<td>Fibre cement</td>
<td>NA2</td>
<td></td>
</tr>
<tr>
<td>LD-KL1664</td>
<td>22</td>
<td>External eave lining</td>
<td>Fibre cement</td>
<td>NA1</td>
<td></td>
</tr>
<tr>
<td>LD-KL1665</td>
<td>22</td>
<td>External tile bedding strips</td>
<td>Fibre cement</td>
<td>NA6</td>
<td></td>
</tr>
<tr>
<td>LD-KL1666</td>
<td>27</td>
<td>Kitchen/dining room</td>
<td>Vinyl floor tile</td>
<td>NA7</td>
<td></td>
</tr>
<tr>
<td>SAMPLE NO.</td>
<td>BUILDING</td>
<td>LOCATION DESCRIPTION</td>
<td>MATERIAL DESCRIPTION</td>
<td>PHOTO NO</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>LD-KL1667</td>
<td>27</td>
<td>Laundry wall sheet</td>
<td>Fibre cement</td>
<td>NA4</td>
<td></td>
</tr>
<tr>
<td>LD-KL1668</td>
<td>27</td>
<td>Bathroom wall sheet</td>
<td>Fibre cement</td>
<td>NA3</td>
<td>Refer shower wall sheet</td>
</tr>
<tr>
<td>LD-KL1669</td>
<td>27</td>
<td>Bathroom floor sheet</td>
<td>Fibre cement</td>
<td>-</td>
<td>Refer to shower room an toilet floor sheet</td>
</tr>
<tr>
<td>LD-KL1670</td>
<td>27</td>
<td>External eave lining</td>
<td>Fibre cement</td>
<td>NA1</td>
<td></td>
</tr>
<tr>
<td>LD-KL1671</td>
<td>27</td>
<td>External house cladding</td>
<td>Fibre cement</td>
<td>NA2</td>
<td></td>
</tr>
<tr>
<td>LD-KL1672</td>
<td>27</td>
<td>Telecoms pit adjacent garage</td>
<td>Fibre cement</td>
<td>NA8</td>
<td></td>
</tr>
<tr>
<td>LD-JS0581</td>
<td>8</td>
<td>External electrical switchboard backing panel</td>
<td>Wood</td>
<td>NA9</td>
<td></td>
</tr>
<tr>
<td>LD-JS0582</td>
<td>9</td>
<td>External electrical switchboard backing panel</td>
<td>Wood</td>
<td>NA10</td>
<td></td>
</tr>
<tr>
<td>LD-JS0583</td>
<td>14</td>
<td>External electrical switchboard backing panel</td>
<td>Wood</td>
<td>NA11</td>
<td></td>
</tr>
<tr>
<td>LD-JS0584</td>
<td>22</td>
<td>External electrical switchboard backing panel</td>
<td>Wood</td>
<td>NA12</td>
<td></td>
</tr>
<tr>
<td>SAMPLE NO.</td>
<td>BUILDING</td>
<td>LOCATION DESCRIPTION</td>
<td>MATERIAL DESCRIPTION</td>
<td>PHOTO NO</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>LD-JS0585</td>
<td>27</td>
<td>External electrical switchboard backing panel</td>
<td>Wood</td>
<td>NA13</td>
<td></td>
</tr>
</tbody>
</table>
5.2 Summary of Identified SMF

Three (3) SMF items were identified during the survey of Academy Close, Campbell. Table 2 below summarises these items.

Table 2: Details of Identified SMF

<table>
<thead>
<tr>
<th>Location</th>
<th>Material Description</th>
<th>Extent</th>
<th>Photo</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal wall cavities</td>
<td>Fibreglass</td>
<td>Throughout</td>
<td>SMF1</td>
<td>Remove prior/manage during demolition</td>
</tr>
<tr>
<td>Underside of roof</td>
<td>Fibreglass</td>
<td>Throughout</td>
<td>SMF2</td>
<td></td>
</tr>
<tr>
<td>Ceiling spaces</td>
<td>Fibreglass</td>
<td>Throughout</td>
<td>SMF3</td>
<td></td>
</tr>
<tr>
<td>Hot water heater units</td>
<td>Fibreglass</td>
<td>Store rooms</td>
<td>SMF4</td>
<td></td>
</tr>
</tbody>
</table>
5.3 Summary of Identified PCB and Non-PCB Containing Capacitors

The capacitors of light fittings throughout the site were inspected. The details of all capacitors were noted and checked against the ANZECC Identification Of PCB-Containing Capacitors (1997).

No PCB containing capacitors were identified to fluorescent light fittings during the survey.

Table 3: Details of Identified PCB and Non-PBC Containing Capacitors

<table>
<thead>
<tr>
<th>Locations</th>
<th>Capacitor Type</th>
<th>PCB? (Y/N)</th>
<th>Photo no.</th>
<th>Extent</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No capacitors were identified during the survey</td>
</tr>
</tbody>
</table>
5.4 Summary of Identified Lead Containing Paint

Analysis of paint samples taken during the survey of Academy Close, Campbell did not identify any lead paint or first schedule paint. Lead paint sample analysis was undertaken by Envirolab Services Pty Ltd, a NATA accredited laboratory. The results of the lead paint sample analysis can be found on the Certificates of Analysis (Appendix G to this report).

Table 4: Details of Lead Paint Samples

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Locations</th>
<th>Colour</th>
<th>Photo no.</th>
<th>Lead content (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lead Paint ≥ 1.0 % Pb</td>
<td>Lead Paint 0.25% Pb ≤ 1.0 % Pb</td>
<td>Lead-free Paint < 0.25 % Pb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD1014AA-P1abc</td>
<td>Guttering, Downpipes, external cladding</td>
<td>Cream/Pink</td>
<td>-</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>LD1014AA-P2abc</td>
<td>Door Frames</td>
<td>Blue</td>
<td>-</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>LD1014AA-P3abc</td>
<td>Downpipes, external cladding</td>
<td>Light Blue</td>
<td>-</td>
<td><0.05</td>
<td>No action required</td>
</tr>
<tr>
<td>LD1014AA-P4abc</td>
<td>Guttering, Downpipes, external cladding</td>
<td>Cream</td>
<td>-</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>LD1014AA-P5abc</td>
<td>Fencing</td>
<td>Green</td>
<td>-</td>
<td><0.05</td>
<td></td>
</tr>
</tbody>
</table>
5.5 Summary of Identified Ozone Depleting Substances (ODS)

All air-conditioning and refrigeration units were inspected during the survey of Academy Close, Campbell. The presence of ODS in inspected units was determined using refrigerant information where available. Units which did not have information regarding the refrigerant type used, were assumed to contain ODS.

Table 5: Details of units inspected for Ozone Depleting Substances (ODS)

<table>
<thead>
<tr>
<th>Unit Location</th>
<th>Unit Description</th>
<th>Refrigerant</th>
<th>ODS? (Y/N)</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughout</td>
<td>Split system AC units</td>
<td>R410A</td>
<td>No</td>
<td>No action required</td>
</tr>
</tbody>
</table>

5.6 Summary of Identified Fuel Tank Storage

No evidence of above ground or underground fuel storage tanks were identified during the survey of Academy Close, Campbell.
6 Limitations

6.1 Intrusive Hazardous Materials Survey

The survey was undertaken in accordance with relevant legislation and best practice and is specific to the time it was conducted.

The purpose of an intrusive (pre-refurbishment or pre-demolition) hazardous materials survey is to identify all hazardous materials as far as practical. However, due to the limitations of these surveys and the sometime random nature of hazardous materials in buildings materials, no guarantee can be made that all hazardous materials were identified during the site survey. Further hazardous materials may be concealed behind other building materials.

Unless expressly mentioned, this survey did not include an assessment of:

In general, inaccessible areas may include, but are not limited to:

- Voids and cavities only accessible through destructive means
- Confined spaces
- Electrical equipment;
- Internal sections of air conditioning;
- Plant equipment;
- Locked rooms and cupboards; and
- Shafts, voids and service risers;
- Roof top;

Only building numbers 8, 9, 14, 22 and 27 were surveyed as part of this assessment, therefore no comment can be made on any suspect asbestos materials present within other buildings on site.

6.2 Report

This document may need to be reviewed periodically to ensure it remains current. All conclusions and recommendations are written by the assessor using information available at the time of writing the report and their professional judgement. The report was designed to be read as a whole document and therefore should only be reproduced in full.

L & D Consulting take no responsibility for the accuracy of analysis results provided by third-party laboratories.

The client should advise any third parties to whom this report is delivered of the specific scope and limitations of the report.
7 Conclusions & Recommendations

An asbestos panel was identified to the fence line of 9 Academy Close, Campbell. Any further fence panels identified to the site’s perimeter fencing should be assumed to also contain asbestos. All other identified suspect asbestos materials present within 8, 9, 14, 22 and 27 Academy Close, Campbell were found to not contain asbestos.

No PCB containing capacitors, ozone depleting substances, lead paint or fuel storage tanks were identified during the survey of Academy Close, Campbell, therefore no action is required in relation to these hazardous materials.

SMF was identified in four (4) locations of each of the surveyed properties on site. This material should be removed prior to demolition works or managed during the demolition of the properties.
APPENDIX A

Asbestos Item Photographs
Photograph A1
Fence line panel to 9 Academy Close.
APPENDIX B

Non-Asbestos Item Photographs
NON-ASBESTOS SAMPLE PHOTOGRAPHS

Photograph NA1
External eave lining

Photograph NA2
External house cladding
NON-ASBESTOS SAMPLE PHOTOGRAPHS

Photograph NA3
Bathroom wall sheet

Photograph NA4
Laundry wall sheet
NON-ASBESTOS SAMPLE PHOTOGRAPHS

Photograph NA5
Storage room wall sheet

Photograph NA6
Tile bedding strips
<table>
<thead>
<tr>
<th>Photograph</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA7</td>
<td>Kitchen/dining room flooring</td>
</tr>
<tr>
<td>NA8</td>
<td>Telecommunication pit</td>
</tr>
</tbody>
</table>
NON-ASBESTOS SAMPLE PHOTOGRAPHS

<table>
<thead>
<tr>
<th>Photograph NA9</th>
<th>Switchboard backing panel - Unit 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photograph NA10</td>
<td>Switchboard backing panel - Unit 9</td>
</tr>
</tbody>
</table>
NON-ASBESTOS SAMPLE PHOTOGRAPHS

Photograph NA11
Switchboard backing panel - Unit 14

Photograph NA12
Switchboard backing panel - Unit 22
NON-ASBESTOS SAMPLE PHOTOGRAPHS

Photograph NA13
Switchboard backing panel - Unit 27
APPENDIX C

SMF Photographs
SMF ITEM PHOTOGRAPHS

Photograph SMF1
Ceiling space - Insulation batts

Photograph SMF2
Ceiling space - Sisalation
SMF ITEM PHOTOGRAPHS

Photograph SMF3
Wall Cavities - Insulation batts

Photograph SMF4
Hot water units
APPENDIX D

Non-Lead Paint Photographs
LEAD PAINT PHOTOGRAPHS

Photograph LP1
Cream/Pink

Photograph LP2
Blue
LEAD PAINT PHOTOGRAPHS

Photograph LP3
Light Blue

Photograph LP4
Cream
<table>
<thead>
<tr>
<th>Photograph LP5</th>
<th>Green</th>
</tr>
</thead>
</table>

LEAD PAINT PHOTOGRAPHS
APPENDIX E

Certificates of Analysis - Asbestos
ASBESTOS FIBRE IDENTIFICATION TEST REPORT

CLIENT DETAILS

<table>
<thead>
<tr>
<th>Client Name:</th>
<th>Arcadis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Contact:</td>
<td>Chris Gunton</td>
</tr>
<tr>
<td>Email:</td>
<td>Chris.gunton@arcadis.com</td>
</tr>
<tr>
<td>Site Name/Reference:</td>
<td>Academy Cl, Campbell</td>
</tr>
</tbody>
</table>

LABORATORY DETAILS

<table>
<thead>
<tr>
<th>Address:</th>
<th>1/6 Dacre Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Manager:</td>
<td>Kyle Lancaster</td>
</tr>
<tr>
<td>Email:</td>
<td>laboratory@landd.com.au</td>
</tr>
</tbody>
</table>

REPORT DETAILS

<table>
<thead>
<tr>
<th>L&D Report Reference:</th>
<th>LD1014ID17032017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples Received:</td>
<td>07/03/2017</td>
</tr>
<tr>
<td>No. of Samples:</td>
<td>26</td>
</tr>
<tr>
<td>Report Issue Date:</td>
<td>17/03/2017</td>
</tr>
</tbody>
</table>

Test Specifications: Qualitative identification of Chrysotile, Amosite and Crocidolite asbestos fibre in bulk samples using Polarised Light Microscopy (PLM) and Dispersion Staining Techniques including Synthetic Mineral Fibre (SMF) and Organic Fibre as per Australian Standard 4964-2004 and methods identified in Section C of the Lancaster & Dickenson Consulting (L & D) Laboratory Manual.

<table>
<thead>
<tr>
<th>L&D ID Reference</th>
<th>Sample Reference</th>
<th>Sample Analysis Date</th>
<th>Sample Description</th>
<th>Sample Mass</th>
<th>Non-Asbestos Fibres Detected</th>
<th>Asbestos Fibres Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1014ID17032017-1</td>
<td>LD-J50492</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.1 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-2</td>
<td>LD-J50493</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.1 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-3</td>
<td>LD-J50494</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.3 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-4</td>
<td>LD-J50495</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.2 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-5</td>
<td>LD-J50496</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.1 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-6</td>
<td>LD-J50497</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.1 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-7</td>
<td>LD-J50498</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.1 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>L&D ID Reference</td>
<td>Sample Reference</td>
<td>Sample Analysis Date</td>
<td>Sample Description</td>
<td>Sample Mass</td>
<td>Non-Asbestos Fibres Detected</td>
<td>Asbestos Fibres Detected</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>LD1014ID17032017-8</td>
<td>LD-JS0499</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.0 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-9</td>
<td>LD-JS0500</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.1 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-10</td>
<td>LD-JS0501</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.8 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-11</td>
<td>LD-JS0502</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.0 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-12</td>
<td>LD-JS0503</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.2 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-13</td>
<td>LD-JS0504</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.3 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-14</td>
<td>LD-JS0505</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.0 g</td>
<td>Organic Fibres Detected</td>
<td>Chrysotile Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-15</td>
<td>LD-KL1661</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.2 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-16</td>
<td>LD-KL1662</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.2 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-17</td>
<td>LD-KL1663</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.2 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-18</td>
<td>LD-KL1664</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.1 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-19</td>
<td>LD-KL1665</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>23.6 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>L&D ID Reference</td>
<td>Sample Reference</td>
<td>Sample Analysis Date</td>
<td>Sample Description</td>
<td>Sample Mass</td>
<td>Non-Asbestos Fibres Detected</td>
<td>Asbestos Fibres Detected</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>LD1014ID17032017-20</td>
<td>LD-KL1666</td>
<td>17/03/2017</td>
<td>Vinyl</td>
<td>8.9 g</td>
<td>None</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-21</td>
<td>LD-KL1667</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.2 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-22</td>
<td>LD-KL1668</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.5 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-23</td>
<td>LD-KL1669</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.1 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-24</td>
<td>LD-KL1670</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.1 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-25</td>
<td>LD-KL1671</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.7 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID17032017-26</td>
<td>LD-KL1672</td>
<td>16/03/2017</td>
<td>Fibre Cement</td>
<td>1.1 g</td>
<td>Organic Fibres Detected</td>
<td>No Asbestos Detected</td>
</tr>
</tbody>
</table>

Notes:
1. Asbestos in bulk materials requiring disintegration such as vinyl, resins, mastic and caulking can be difficult to detect using PLM and dispersion staining due to the low grade or small length or diameter of the asbestos fibres present in the material, or due to the fact that very fine fibres have been distributed intimately throughout the materials. Where no asbestos is detected in such a sample, another, independent analytical technique should be considered.
2. Where a sample is delivered to the laboratory by a third party, L & D accepts no responsibility for the quality of sample submitted, including whether the sample is representative of the source material.
3. All L & D reports must not be reproduced except in full.
4. The practical detection limit for identification of asbestos fibre using PLM and dispersion staining techniques is 0.01-0.1%, equivalent to 0.1-1g/kg.
5. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.
ASBESTOS FIBRE IDENTIFICATION TEST REPORT

CLIENT DETAILS
- **Client Name:** Arcadis
- **Client Contact:** Chris Gunton
- **Email:** Chris.gunton@arcadis.com
- **Site Name/Reference:** Academy Cl, Campbell

LABORATORY DETAILS
- **Address:** 1/6 Dacre Street
- **Lab Manager:** Kyle Lancaster
- **Email:** laboratory@landd.com.au

REPORT DETAILS
- **L&D Report Reference:** LD1014ID24032017
- **Samples Received:** 24/03/2017
- **No. of Samples:** 5
- **Report Issue Date:** 24/03/2017

Test Specifications:
Qualitative identification of Chrysotile, Amosite and Crocidolite asbestos fibre in bulk samples using Polarised Light Microscopy (PLM) and Dispersion Staining Techniques including Synthetic Mineral Fibre (SMF) and Organic Fibre as per Australian Standard 4964-2004 and methods identified in Section C of the Lancaster & Dickinson Consulting (L & D) Laboratory Manual.

<table>
<thead>
<tr>
<th>L&D ID Reference</th>
<th>Sample Reference</th>
<th>Sample Analysis Date</th>
<th>Sample Description</th>
<th>Sample Mass</th>
<th>Non-Asbestos Fibres Detected</th>
<th>Asbestos Fibres Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1014ID24032017-1</td>
<td>LD-J50581</td>
<td>24/03/2017</td>
<td>Wood</td>
<td>1.1 g</td>
<td>None</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID24032017-2</td>
<td>LD-J50582</td>
<td>24/03/2017</td>
<td>Wood</td>
<td>1.1 g</td>
<td>None</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID24032017-3</td>
<td>LD-J50583</td>
<td>24/03/2017</td>
<td>Wood</td>
<td>1.1 g</td>
<td>None</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID24032017-4</td>
<td>LD-J50584</td>
<td>24/03/2017</td>
<td>Wood</td>
<td>1.2 g</td>
<td>None</td>
<td>No Asbestos Detected</td>
</tr>
<tr>
<td>LD1014ID24032017-5</td>
<td>LD-J50585</td>
<td>24/03/2017</td>
<td>Wood</td>
<td>1.1 g</td>
<td>None</td>
<td>No Asbestos Detected</td>
</tr>
</tbody>
</table>
Notes:

1. Asbestos in bulk materials requiring disintegration such as vinyl, resins, mastic and caulking can be difficult to detect using PLM and dispersion staining due to the low grade or small length or diameter of the asbestos fibres present in the material, or due to the fact that very fine fibres have been distributed intimately throughout the materials. Where no asbestos is detected in such a sample, another, independent analytical technique should be considered.

2. Where a sample is delivered to the laboratory by a third party, L & D accepts no responsibility for the quality of sample submitted, including whether the sample is representative of the source material.

3. All L & D reports must not be reproduced except in full.

4. The practical detection limit for identification of asbestos fibre using PLM and dispersion staining techniques is 0.01-0.1%, equivalent to 0.1-1g/kg.

5. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.
APPENDIX F

Certificates of Analysis – Lead Paint
CERTIFICATE OF ANALYSIS

Client: Lancaster & Dickenson Consulting Pty Ltd
Unit 8, 285 Canberra Ave
Fyshwick
ACT 2609

Attention: Ewan Dickenson

Sample log in details:
Your Reference: LD1014AA
No. of samples: 15 paints
Date samples received / completed instructions received 10/03/17 / 10/03/17

Analysis Details:
Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:
Date results requested by: / Issue Date: 17/03/17 / 16/03/17
Date of Preliminary Report: Not Issued
NATA accreditation number 2901. This document shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17025 - Testing Tests not covered by NATA are denoted with *.

Results Approved By:

[Signature]
David Springer
General Manager
<table>
<thead>
<tr>
<th>Our Reference:</th>
<th>UNITS</th>
<th>163303-1</th>
<th>163303-2</th>
<th>163303-3</th>
<th>163303-4</th>
<th>163303-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Reference:</td>
<td>UNITS</td>
<td>163303-6</td>
<td>163303-7</td>
<td>163303-8</td>
<td>163303-9</td>
<td>163303-10</td>
</tr>
<tr>
<td>Our Reference:</td>
<td>UNITS</td>
<td>163303-11</td>
<td>163303-12</td>
<td>163303-13</td>
<td>163303-14</td>
<td>163303-15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lead in Paint</th>
<th>Date Sampled</th>
<th>08/03/17</th>
<th>08/03/17</th>
<th>08/03/17</th>
<th>08/03/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Sampled</td>
<td>Date prepared</td>
<td>13/03/17</td>
<td>13/03/17</td>
<td>13/03/17</td>
<td>13/03/17</td>
</tr>
<tr>
<td>Date analysed</td>
<td>Lead in paint</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>0.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lead in Paint</th>
<th>Date Sampled</th>
<th>08/03/17</th>
<th>08/03/17</th>
<th>08/03/17</th>
<th>08/03/17</th>
<th>08/03/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Sampled</td>
<td>Date prepared</td>
<td>13/03/17</td>
<td>13/03/17</td>
<td>13/03/17</td>
<td>13/03/17</td>
<td>13/03/17</td>
</tr>
<tr>
<td>Date analysed</td>
<td>Lead in paint</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lead in Paint</th>
<th>Date Sampled</th>
<th>08/03/17</th>
<th>08/03/17</th>
<th>08/03/17</th>
<th>08/03/17</th>
<th>08/03/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Sampled</td>
<td>Date prepared</td>
<td>13/03/17</td>
<td>13/03/17</td>
<td>13/03/17</td>
<td>13/03/17</td>
<td>13/03/17</td>
</tr>
<tr>
<td>Date analysed</td>
<td>Lead in paint</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Method ID</td>
<td>Methodology Summary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metals-004</td>
<td>Digestion of Paint chips/scrapings/liquids for Metals determination by ICP-AES/MS and or CV/AAS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUALITY CONTROL</td>
<td>UNITS</td>
<td>PQL</td>
<td>METHOD</td>
<td>Blank</td>
<td>Duplicate Sm#</td>
<td>Duplicate results Base</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Lead in Paint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date prepared</td>
<td></td>
<td></td>
<td></td>
<td>13/03/2</td>
<td>163303-1</td>
<td>13/03/2017</td>
</tr>
<tr>
<td>Date analysed</td>
<td></td>
<td></td>
<td></td>
<td>15/03/2</td>
<td>163303-1</td>
<td>15/03/2017</td>
</tr>
<tr>
<td>Lead in paint</td>
<td>%w/w</td>
<td>0.05</td>
<td>Metals-004</td>
<td><0.05</td>
<td>163303-1</td>
<td><0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUALITY CONTROL</th>
<th>UNITS</th>
<th>Dup. Sm#</th>
<th>Duplicate Base + Duplicate + %RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead in Paint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date prepared</td>
<td></td>
<td>163303-10</td>
<td>13/03/2017</td>
</tr>
<tr>
<td>Date analysed</td>
<td></td>
<td>163303-10</td>
<td>15/03/2017</td>
</tr>
<tr>
<td>Lead in paint</td>
<td>%w/w</td>
<td>163303-10</td>
<td><0.05</td>
</tr>
</tbody>
</table>
Report Comments:

Asbestos ID was analysed by Approved Identifier: Not applicable for this job
Asbestos ID was authorised by Approved Signatory: Not applicable for this job

INS: Insufficient sample for this test
NR: Test not required
<: Less than
>: Greater than
PQL: Practical Quantitation Limit
RPD: Relative Percent Difference
NT: Not tested
NA: Test not required
LCS: Laboratory Control Sample
Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.